לדלג לתוכן

פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


משחק מגדלי האנוי עשוי עץ לבוד

מגדלי האנויאנגלית: Towers of Hanoi) הוא משחק חידה מתמטי, שמקורו בסוף המאה ה-19. המשחק הוא אמצעי הדגמה פופולרי לעקרון הרקורסיה ולמושגים בסיסיים אחרים בקומבינטוריקה ובמדעי המחשב.

המשחק כולל שלושה מוטות אנכיים ("המגדלים") ומספר דיסקיות בגדלים שונים שניתן להשחיל על המוטות. בתחילת המשחק, הדיסקיות מסודרות על פי הגודל על אחד המוטות, כשהגדולה ביותר למטה והקטנה ביותר למעלה.

מטרת המשחק היא להעביר את כל הדיסקיות למוט אחר, תחת שני החוקים הללו:

  • מותר להזיז רק דיסקית אחת בכל פעם - כלומר להוציאה מהמוט שבו היא נמצאת, ולהשחיל אותה על מוט אחר.
  • אסור לשים דיסקית על דיסקית שקטנה ממנה.

כאשר מקודדים כללים אלה בצורה גרפית, מתקבלת גרסה סופית של משולש סיירפינסקי.


רנה דקארטצרפתית: René Descartes), מוכר גם בצורה הלטינית של שמו רנאטוס קרטזיוס (Renatus Cartesius)‏ (31 במרץ 1596 - 11 בפברואר 1650) הוא פילוסוף ומתמטיקאי צרפתי. נחשב לאבי הפילוסופיה והמתמטיקה המודרנית, ולאחד ההוגים החשובים והמשפיעים בהיסטוריה המערבית.

הוא השפיע הן על פילוסופים בני זמנו והן על אלו שבאו אחריהם, ונודע בגישתו הרציונלית המעמידה את התבונה ותכונות המציאות הא-פריוריות (כלומר, הקודמות להתנסות) במרכז חקירותיו. דקארט התעסק בעיקר בידיעה ודאית וביחס בין גוף לנפש. למרות שהיה מוכר בעיקר עקב הגותו פורצת הגבולות בפילוסופיה, הוא השיג פרסום רחב גם כממציא של מערכת הצירים הקרטזית ("קרטזית" מלשון "קרטזיוס", משמע, דקארט). מערכת זו הייתה בעלת השפעה רבה על התפתחות המתמטיקה המודרנית.

זווית בגודל של רדיאן אחד נוצרת על ידי קשת שהיקפה שווה לאורך של רדיוס המעגל.

איור הממחיש את מושג האינטגרל הקווי.

דילמת האסיר היא בעיה בתורת המשחקים, שפורסמה בשנת 1950 על ידי מריל פלאד ומלווין דרשר מ"מכון ראנד" בארצות הברית. על פי גרסה נפוצה לבעיה, המשטרה עצרה שני עבריינים שביצעו פשע משותף, ומפרידה ביניהם לצורך חקירה. אם תצליח המשטרה להביא להרשעתם, ייכנס כל אחד מהם לכלא ל-15 שנה, אך בחוסר ראיות הם יועמדו לדין על עבירה משנית שבגינה ייכנס כל אחד מהם לכלא לשנה אחת (למשל רצח לעומת החזקת נשק לא חוקית). למשטרה אין די ראיות להעמידם לדין, ולכן היא מציעה לכל אחד מהם להעיד נגד רעהו, וכפרס מובטח לעד עונש מופחת: אם שני האסירים יקבלו את הצעת המשטרה, ייכנס כל אחד מהם לכלא לחמש שנים, ואם רק אחד מהם יעיד ורעהו ישתוק, העד יצא מיד לחופשי וחברו ייכלא ל-15 שנה. לפיכך, לא משנה מה כל אסיר יעשה, לשני כדאי להודות באשמה, ואף על פי כן הודאה באשמה של שני האסירים היא לא התוצאה האופטימלית עבורם. במדע המדינה משמשת דילמת האסיר להמחשת מצב שבו שתי מדינות נכנסות למרוץ חימוש, לדוגמה המלחמה הקרה בין ארצות הברית לברית המועצות, שכן בין אם המדינה השנייה תוקפת או לא עדיף להם לתקוף, אך שלום הדדי עדיף על מלחמה הדדית.


מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.


n!=2πn(ne)n(1+O(1n)).


במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.

האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: NRICH (באנגלית)

אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

איאן סטיוארט, תיבת האוצרות המתמטיים של פרופסור סטיוארט, כנרת זמורה-ביתן דביר, 2012

כאשר היה פרופ' איאן סטיוארט, מתמטיקאי בריטי ידוע, בן ארבע עשרה, החל לרשום בפנקס רעיונות מתמטיים שנראו לו מעניינים ושלא נלמדו בבית הספר. עד מהרה נזקק לפנקס חדש, ובסופו של דבר לארונית שלמה. מתוכם, ברר סטיוארט כ-180 חידות, רעיונות, סיפורים ובדיחות מתמטיות, הפרוסות על פני כ-310 עמודים. בסוף הספר ישנן פתרונות לכל החידות עם מעט הסברים.

סגנון הכתיבה החופשי אפשר לסטיוארט להביא את דבריו באופן קליל, אשר יובנו גם למי שאינו עוסק בתחום ואינו מכיר את השיטות המתמטיות ודרכי ההוכחה מקובלות במחקר.

כפעם בפעם הוא מפנה לאתרי אינטרנט העוסקים בנושא הפרק שבו הוא דן, אך לרוב הוא אינו מפנה לביבליוגרפיה והמעוניינים בכך יצטרכו לחפש בעצמם.

משפטים מפורסמים
השערות מפורסמות

משפט פיתגורס הוא משפט מפורסם בגאומטריה, המתאר את היחס בין שלוש צלעותיו של משולש ישר-זווית. המשפט קובע כי סכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר זווית, שווה לשטח הריבוע הבנוי על היתר (הניצבים הם שתי צלעות שביניהן כלואה הזווית הישרה, והיתר הוא הצלע הארוכה של המשולש). בניסוח פורמלי: אם אורכי הניצבים במשולש ישר-זווית הם  a ו- b, ואורך היתר הוא  c, אז:  a2+b2=c2.

המשפט נקרא על שם המתמטיקאי והפילוסוף היווני פיתגורס, שחי במאה ה-6 לפנה"ס, אשר נהוג לייחס לו את ההוכחה הכללית הראשונה של המשפט, אם כי אין ודאות שהוא אכן זה שהוכיחו.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה