פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
![]() במתמטיקה, (האות היוונית פִּי, או פַּאי לפי ההיגוי האנגלי) מייצגת את היחס הקבוע (בגאומטריה האוקלידית) בין היקף המעגל לקוטרו. הוא קבוע מתמטי שמופיע בנוסחאות רבות במתמטיקה ובפיזיקה. הערך מסומן כ-π משום שהוא משמש לחישוב היקף מעגל: האות π היא הראשונה במילה היוונית περιφερεια (פריפריה) שמשמעותה היקף. האות נקראת במקור "פִּי", אך עקב הקריאה שלה באנגלית, מקובל בישראל לקרוא לה "פאי". ארבעים הספרות הראשונות של הן: 3.1415926535897932384626433832795028841971 |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
![]() לאונרד אוילר (Leonhard Euler) (15 באפריל 1707 - 18 בספטמבר 1783), מתמטיקאי ופיזיקאי שווייצרי מוביל, שבילה את רוב חייו ברוסיה ובגרמניה. הוא פרסם יותר עבודות במתמטיקה מאשר כל מתמטיקאי אחר בהיסטוריה. אוילר ביצע תרומות ותגליות בתחומים מגוונים, כמו חדו"א ותורת הגרפים. הוא גם הציג חלק נכבד מן המינוחים וסימני המתמטיקה המודרניים, במיוחד בתחום האנליזה מתמטית, כדוגמת סימון הפונקציה. כמו כן, הוא ידוע בזכות עבודתו במכניקה, באופטיקה ובאסטרונומיה. אוילר נחשב למתמטיקאי המוביל של המאה ה-18 ולאחד מהבולטים ביותר בכל הזמנים. הוא היה המתמטיקאי הפורה ביותר בהיסטוריה: הוא פרסם 886 ספרים ומאמרים בימי חייו. ישנם 60-80 מושגים במתמטיקה הנקראים על שמו. אמרה המיוחסת לפייר סימון לפלס באה לתאר את גדולתו והשפעתו של אוילר במתמטיקה: "למדו מאוילר, למדו מאוילר, הוא המאסטר של כולנו". |
עריכהתמונה נבחרת
|
עריכהאנימציה נבחרת
![]() מסלולה של נקודה על שפתו של מעגל המתגלגל על שפתו מעגל אחר בעל רדיוס גדול פי ארבעה נקראת "אסטרואידה". משוואתה של אסטרואידה היא . |

תחום עניין מעט יוצא דופן בפועלו של המתמטיקאי קרל פרידריך גאוס, היה חקר האפשרות של קיום חיים מחוץ לכדור הארץ. גאוס היה הראשון שהעלה רעיון יצירתי איך להעביר מסר אופטי לחוצנים תבוניים אחרים. גלי הרדיו לא נתגלו עדיין, כך שתקשורת רדיו לא הובאה בחשבון. הרעיון של גאוס היה לטעת במדבר סהרה שטח מוריק בן מאות קמ"ר בצורת תרשים של משפט פיתגורס. אם יבחינו החוצנים בטלסקופים שלהם בצורה הזאת, הם יבינו כי הסבירות שהיא מקרית נמוכה ביותר ויסיקו שיצרה אותה ציוויליזציה מתקדמת.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
נוסחה להפרש של שני ריבועים. נוסחה בסיסית באלגברה. כמו יתר הנוסחאות באלגברה בסיסית, פיתוח הנוסחה פשוט מאוד ומבוסס על חוק הפילוג, חוק הקיבוץ וחוק החילוף. אולם שימוש בנוסחה "לכיוון השני" מימין לשמאל מאפשר לבצע מניפולציות לא טריוויאליות משום שהוא מחליף ביטוי שעל פניו לא נראה פריק, במכפלה של שני ביטויים פשוטים יותר. על נוסחה זו מבוסס טריק שנקרא מכפלה בצמוד

במשחק מגדלי האנוי נקרא לסידור של הדיסקיות 'מצב חוקי' אם אף דיסקית אינה מונחת מעל דיסקית קטנה ממנה. עבור מגדל עם n דיסקיות, כמה מצבים חוקיים ישנם? האם ניתן מהמצב ההתחלתי הנראה בציור, להגיע לכל מצב חוקי?
פתרון | |
---|---|
|
עריכהאוצרות הרשת
![]() בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: אלף אפס "אלף אפס" הוא האתר של רבעון בשם זה, שיצא לאור, ב-23 גיליונות, על ידי החוג למתמטיקה במכללה ירושלים. הרבעון והאתר לוקחים את המתמטיקה בקלות. האתר מכיל חידות מקסימות ברמות שונות ומאמרים שלא נכללים בחומר של בחינות הבגרות אבל כיף לקרוא אותם. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: ![]() ארנון אברון, משפטי גדל ובעיית היסודות של המתמטיקה, סדרת אוניברסיטה משודרת, בהוצאת משרד הביטחון – ההוצאה לאור, 1998 כשאר הספרים בסדרת אוניברסיטה משודרת, גם ספר זה מבוסס על הרצאות שנתן מחברו בגלי צה"ל. הספר עוסק בחקר יסודות המתמטיקה, שזכה למחקר אינטנסיבי בעשורים הראשונים של המאה העשרים והגיע לשיאו במשפטי האי שלמות של גדל. הספר עוסק בנושאים מתחום ההיסטוריה של המתמטיקה והפילוסופיה של המתמטיקה. המחבר, ארנון אברון, הוא פרופסור בחוג למדעי המחשב באוניברסיטת תל אביב. בפתח דבר לספרו הוא מציין שהספר "פונה הן לקוראים החסרים כמעט כל רקע מתימטי והן למתמטיקאים מקצועיים שהנושאים הנידונים כאן אינם שייכים לתחומי התמחותם". |
משפטים מפורסמים
|
השערות מפורסמות
|
משפט ארדש-סקרש במתמטיקה דיסקרטית הוא משפט הקובע כי בכל סדרה באורך של מספרים ממשיים שונים יש תת-סדרה עולה באורך או תת-סדרה יורדת באורך . המשפט הדוק - הטענה אינה נכונה עבור סדרה כללית באורך .
המשפט הוא מטיפוס רמזי - אין אי סדר מוחלט - בתוך כל ים גדול דיו של כאוס יש איים של סדר.
את המשפט הוכיחו פאול ארדש וגאורגה סקרש, במאמר שפרסמו בשנת 1935.
נושאים במתמטיקה
| ||
---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט |
ערכים המחפשים עורכים ![]() |
דיונים, ייעוץ ועזרה
|