לדלג לתוכן

פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


באנליזה מתמטית, זהות אוילר, הקרויה על שמו של המתמטיקאי השווייצרי הידוע לאונרד אוילר, היא השוויון הבא:

eπi+1=0

כל אברי הזהות הם מספרים קבועים:

זהות אוילר נחשבת בעיני רבים כזהות יוצאת דופן בשל יופיה המתמטי, הנובע מהפעולות הבסיסיות שהיא משלבת בתוכה (חיבור, כפל והעלאה בחזקה) ומהקבועים המתמטיים הבסיסיים שהיא מקשרת ביניהם.


ג'ון פורבס נאש
ג'ון פורבס נאש

ג'ון פורבס נאש הבן (13 ביוני 1928 - 23 במאי 2015), מתמטיקאי אמריקאי המתמחה בתורת המשחקים וגאומטריה דיפרנציאלית.

בשנת 1994 קבל פרס נובל לכלכלה, עבור עבודתו החלוצית משנות ה-50 בתורת המשחקים. עם הישגיו האקדמיים הבולטים נמנים פתוח 'שיווי משקל נאש' ופתרון 'בעיית המיקוח של נאש', המהווים מושגי יסוד בפתרון בעיות 'משחקים שיתופיים' ו'משחקים אי-שיתופיים' בתורת המשחקים בתחומי הכלכלה, הביולוגיה ומדע המדינה. הקריירה האקדמית המזהירה של נאש עומדת בצל מחלת הסכיזופרניה, שבה לקה בסמוך לפריצתו כמתמטיקאי מחונן בשנות ה-50. בשל המחלה נפסקה הקריירה האקדמית של נאש למשך כ-30 שנה (1966-1996) ורק בשנות ה-90 שב לחקר המתמטיקה.

נאש נולד בבלופילד שבמערב וירג'יניה, בן לג'ון נאש האב, טכנאי אלקטרוניקה, ווירג'יניה מרטין, מורה לשפות. בשנים (1945-1948) למד לתואר ראשון ושני במכון הטכנולוגי קרנגי בפיטסבורג, פנסילבניה (כיום אוניברסיטת קרנגי מלון), והוכתר על ידי מוריו כגאון. ב-1950 קבל נאש תואר דוקטור מאוניברסיטת פרינסטון על חיבורו "משחקים אי-שיתופיים". בעבודה זו פיתח לראשונה את פתרונו הבסיסי למשחקים אי-שיתופיים שזכה מאוחר יותר לכינוי 'שיווי משקל נאש'. 40 שנה מאוחר יותר, ב-1994, זיכתה אותו עבודתו זו משנותיו הראשונות בפרינסטון בפרס נובל לכלכלה. על עבודה זו קיבל נאש ב-1978 גם את פרס ג'ון פון ניומן לתאוריה.

כיסוי האוריינטציות של טבעת מביוס.

כיסוי האוריינטציות הוא כלי לחקר יריעות לא אוריינטביליות. עבור משטח במרחב, ניתן לתאר את כיסוי האוריינטציות באופן הבא: נדמיין שהמשטח עשוי מנייר דו-שכבתי. נפריד את השכבות. היריעה שתתקבל תהיה מרחב הכיסוי של כיסוי האוריינטציות. העתקת הכיסוי תהיה ההדבקה של שתי השכבות בחזרה.

במקרה של טבעת מביוס (זאת אומרת טבעת עם חצי פיתול) היריעה המתקבלת לאחר הפרדת השכבות היא טבעת עם פיתול שלם. יריעה זאת דיפאומורפית לטבעת רגילה, ובפרט אוריינטבילית.

מסלולה של נקודה על שפתו של מעגל המתגלגל על שפתו מעגל אחר בעל רדיוס גדול פי ארבעה נקראת "אסטרואידה". משוואתה של אסטרואידה היא x2/3+y2/3=1.

איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור
איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור

באופן אינטואיטיבי, ממד של קבוצה (למשל תת-קבוצה של המרחב האוקלידי) מציין את מספר הפרמטרים הבלתי תלויים הנחוצים לציון מקומה של נקודה במרחב זה. נקודה במישור, למשל, מתוארת באמצעות שני פרמטרים בלתי תלויים (למשל, הקואורדינטות הקרטזיות שלה), ולכן, במשמעות זו, המישור הוא דו-ממדי. ישנן קבוצות שמימדן אינו מספר טבעי. כך למשל, הממד של קבוצת קנטור הוא  ln(2)/ln(3).


מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.


x=ba x1,2=b±b24ac2a x1,2,3b3a+b327a3+bc6a2d2a+(b327a3+bc6a2d2a)2+(c3ab29a2)33+b327a3+bc6a2d2a(b327a3+bc6a2d2a)2+(c3ab29a2)33

נוסחאות למציאת פתרונות למשוואות פולינומיאליות ממעלות 1 עד 4. השורשים ממעלה שלישית הם אלגבריים, זאת אומרת שניתן להציב במקומם כל אחד משלושת השורשים המרוכבים. עם זאת בשתי הנוסחאות האחרונות, לא כל הצבה כזאת (כמו גם בחירה של הסימן ±) תיתן שורש, אבל כל שורש אפשר לקבל כהצבה. הנוסחה האחרונה לא תקפה כשהמכנים מתאפסים, יש נוסחאות שונות למקרים אלה. שתי הנוסחאות האחרונות נחשבות לאחד ההישגים המשמעותיים של המתמטקה של הרנסאנס. בגלל החזרות הרבות, אפשר לפשט משמעותית את שתי הנוסחאות הארחונות אם מכניסים סימוני עזר בשביל חלקים של הנוסחה שחוזרים על עצמם. לפי תורת גלואה, לא ניתן לפתח נוסחאות המבוססות על ארבע פעולות החשבון ושורשים עבור משוואות ממעלה גבוהה יותר.


איך אפשר לחשב את המכפלה של שני מספרים, במחשבון שבו אפשר לבצע רק חיבור, חיסור והיפוך (היינו, הפעולה  x1x)?


בונוס:נסו להשתמש ב6 פעולות היפוך בלבד

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: MAA Online (באנגלית)

האתר של MAA - האגודה המתמטית של ארצות הברית, ובו שלל טורים מעניינים, כולל כאלה שאינם מצריכים בקיאות במתמטיקה.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

דאגלס הופשטטר, גדל, אשר, באך, דביר, 2011

גדל, אשר, באך, או בשמו המלא "גדל, אשר, באך: גביש בן אלמוות: פוגה מטאפורית על נפשות ומכונות ברוח לואיס קרול" הוא ספר עיון העוסק בשאלות מתמטיות ופילוסופיות, אך גם בנושאים רבים הנוגעים לאמנות, לוגיקה, מוזיקה ומדעי המחשב. הספר יצא לאור באנגלית ב-1979 ותורגם לעברית ב-2011.

משפטים מפורסמים
השערות מפורסמות

משפט ארדש-סקרש במתמטיקה דיסקרטית הוא משפט הקובע כי בכל סדרה באורך  ab+1 של מספרים ממשיים שונים יש תת-סדרה עולה באורך  a+1 או תת-סדרה יורדת באורך  b+1. המשפט הדוק - הטענה אינה נכונה עבור סדרה כללית באורך  ab.

המשפט הוא מטיפוס רמזי - אין אי סדר מוחלט - בתוך כל ים גדול דיו של כאוס יש איים של סדר.

את המשפט הוכיחו פאול ארדש וגאורגה סקרש, במאמר שפרסמו בשנת 1935.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה