פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
|
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
אינטגרל קווי (לעתים גם אינטגרל לאורך עקום, אינטגרל מסלולי או אינטגרל מסילתי) הוא אינטגרל המחושב לאורך מסילה במרחב, ולאו דווקא לאורך קטע ממשי. כמו האינטגרל הרגיל, האינטגרל הקווי מסכם ערכים של פונקציה נתונה ומשקלל אותם לפי אורך המסילה, באופן המכליל סיכום של מספר סופי של ערכים. הפונקציה שאת האינטגרל שלה מחשבים עשויה לקבל ערכים ממשיים, או ערכים וקטוריים בכל מרחב בנך (ובכלל זה המרחב האוקלידי). הצורך באינטגרל קווי עולה בעת ניתוח גדלים הקשורים בתנועה במסלול שאינו ישר, או בתכונות פיזיקליות של גוף עקום, כגון חוט דק. בדרך זו, ניתן לחשב גדלים כדוגמת אורך, מסה, או מטען חשמלי. האינטגרל הקווי מחשב כוח הפועל על גוף המיוצג על ידי עקום, או עבודה של כוח המניע מסה לאורכו, כמו גם התנהגות של שדות פיזיקליים (למשל, שדה חשמלי) על פני מסלולים. לאינטגרלים קוויים של פונקציות אנליטיות או הרמוניות ישנן תכונות מתמטיות הקושרות אותם לערכי הפונקציה במשטח שאותו סוגר העקום. בקשרים אלה עוסקים כמה משפטים באנליזה מרוכבת, באנליזה וקטורית ובאנליזה הרמונית. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
ג'ון לואיס פון נוימן (28 בדצמבר 1903 - 8 בפברואר 1957), מתמטיקאי אמריקאי ממוצא יהודי-הונגרי. היה שותף לשניים מההישגים הטכנולוגיים הבולטים של המאה העשרים: פיתוח פצצת אטום ופיתוח המחשב האלקטרוני, אך זכור בעיקר כיוצרה של תורת המשחקים. כמו כן הרים תרומה משמעותית לחקר מכניקת הקוונטים, תורת הקבוצות (תחום שהפגיש אותו עם אברהם הלוי פרנקל) וענפי מתמטיקה נוספים. שילב בהצלחה רבה פעילות במחקר טהור ובמחקר שימושי, בענפי מדע רבים. פון נוימן נולד בבודפשט למשפחה יהודית מתבוללת. אביו, מקס נוימן, היה בנקאי יהודי אמיד. עד גיל 10 למד בבית בהדרכת מורים פרטיים כמנהג עשירי אירופה. סימנים של גאונות ניכרו בו כבר בילדותו. יוג'ין ויגנר, חתן פרס נובל לפיזיקה לשנת 1963, שלמד יחד עם פון נוימן בבית הספר התיכון, אמר עליו מאוחר יותר: "יש שני סוגי אנשים בעולם: ג'וני פון נוימן ואנחנו, השאר". המורה למתמטיקה בגימנסיה זיהה מיד את כושרו המתמטי יוצא הדופן והמליץ להוריו לשכור לו מורה פרטי למתמטיקה. ההורים שכרו את מיכאל פקטה שהיה מרצה באוניברסיטת בודפשט והוא לימד אותו מתמטיקה גבוהה. |
|
עריכהתמונה נבחרת
קתדרלת ברזיליה הבנויה בצורת היפרבולואיד, צורה אשר נועדה לייצג זוג ידיים הנישאות לשמיים. משוואתו של היפרבולואיד מצורה זו הנה :. |
עריכהאנימציה נבחרת
אנימציה המדגימה את הרעיון העומד מאחורי משולש פסקל המאפשר חישוב של המקדמים הבינומיים.
|
דילמת האסיר היא בעיה בתורת המשחקים, שפורסמה בשנת 1950 על ידי מריל פלאד ומלווין דרשר מ"מכון ראנד" בארצות הברית. על פי גרסה נפוצה לבעיה, המשטרה עצרה שני עבריינים שביצעו פשע משותף, ומפרידה ביניהם לצורך חקירה. אם תצליח המשטרה להביא להרשעתם, ייכנס כל אחד מהם לכלא ל-15 שנה, אך בחוסר ראיות הם יועמדו לדין על עבירה משנית שבגינה ייכנס כל אחד מהם לכלא לשנה אחת (למשל רצח לעומת החזקת נשק לא חוקית). למשטרה אין די ראיות להעמידם לדין, ולכן היא מציעה לכל אחד מהם להעיד נגד רעהו, וכפרס מובטח לעד עונש מופחת: אם שני האסירים יקבלו את הצעת המשטרה, ייכנס כל אחד מהם לכלא לחמש שנים, ואם רק אחד מהם יעיד ורעהו ישתוק, העד יצא מיד לחופשי וחברו ייכלא ל-15 שנה. לפיכך, לא משנה מה כל אסיר יעשה, לשני כדאי להודות באשמה, ואף על פי כן הודאה באשמה של שני האסירים היא לא התוצאה האופטימלית עבורם. במדע המדינה משמשת דילמת האסיר להמחשת מצב שבו שתי מדינות נכנסות למרוץ חימוש, לדוגמה המלחמה הקרה בין ארצות הברית לברית המועצות, שכן בין אם המדינה השנייה תוקפת או לא עדיף להם לתקוף, אך שלום הדדי עדיף על מלחמה הדדית.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.
האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?
| פתרון | |
|---|---|
|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: NRICH (באנגלית) אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: איאן סטיוארט, תיבת האוצרות המתמטיים של פרופסור סטיוארט, כנרת זמורה-ביתן דביר, 2012 כאשר היה פרופ' איאן סטיוארט, מתמטיקאי בריטי ידוע, בן ארבע עשרה, החל לרשום בפנקס רעיונות מתמטיים שנראו לו מעניינים ושלא נלמדו בבית הספר. עד מהרה נזקק לפנקס חדש, ובסופו של דבר לארונית שלמה. מתוכם, ברר סטיוארט כ-180 חידות, רעיונות, סיפורים ובדיחות מתמטיות, הפרוסות על פני כ-310 עמודים. בסוף הספר ישנן פתרונות לכל החידות עם מעט הסברים. סגנון הכתיבה החופשי אפשר לסטיוארט להביא את דבריו באופן קליל, אשר יובנו גם למי שאינו עוסק בתחום ואינו מכיר את השיטות המתמטיות ודרכי ההוכחה מקובלות במחקר. כפעם בפעם הוא מפנה לאתרי אינטרנט העוסקים בנושא הפרק שבו הוא דן, אך לרוב הוא אינו מפנה לביבליוגרפיה והמעוניינים בכך יצטרכו לחפש בעצמם. |
|
משפטים מפורסמים
|
השערות מפורסמות
|
משפט המינימקס הוא משפט בתורת המשחקים העוסק במשחק סכום אפס סופי לשני שחקנים. (משחק סכום אפס הוא משחק שבו הרווח של כל משתתף מאוזן במדויק על–ידי ההפסד של המשתתפים האחרים). המשפט קובע כי לכל משחק מסוג זה קיימת דרך פעולה אופטימלית לשחק מבחינת שני השחקנים, כך שהרווח המינימלי של כל אחד אינו תלוי במעשי השני. המשפט הוכח בשנת 1928 על ידי ג'ון פון נוימן. משפט המינימקס נקרא כך כיוון שכל שחקן שואף למקסם את התשלום המינימלי שהוא יכול לקבל מהמשחק, או למזער ("למנם") את ההפסד המקסימלי.
נושאים במתמטיקה
| ||
|---|---|---|
| כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
| שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
| מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
| מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
| מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
| יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
| מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
| עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | |
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|






