פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור
איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור

קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע ישר, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף.

קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל.


קרל פרידריך גאוס (גרמנית: Carl Friedrich Gauß‏, 30 באפריל 177723 בפברואר 1855) מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים. גאוס מכונה נסיך המתמטיקאים, והוא מוזכר בנשימה אחת יחד עם ארכימדס וניוטון.

גאוס תרם רבות בתחומי האלגברה, תורת המספרים, גאודזיה, תורת הכבידה, תורת החשמל והמגנטיות, אסטרונומיה, אופטיקה ועוד.

גאוס נולד בבראונשווייג שבסקסוניה תחתית כבן יחיד למשפחת פועלים ענייה. גאוס עצמו סיפר כי עמד על סוד הפעולות האריתמטיות עוד בטרם ידע לדבר. קיימים סיפורים רבים על גאונותו כילד, רובם נחשבים כאגדות. אחד מהם, המובא בספרו של אריק טמפל בל, Men of Mathematics, הוא כי עוד בטרם מלאו לו 3 שנים, נתגלה להוריו כשרונו המתמטי הייחודי: אביו עסק בהכנת גיליון השכר השבועי של הפועלים שבהשגחתו וביצע במשך דקות ארוכות את החישובים המסובכים. כאשר סיים את החישוב, אמר לו בנו שנפלה טעות בחישוב, ונקב בתוצאה שחישב בראשו.

דוגמה פופולרית בטופולוגיה: דפורמציה רציפה (הומוטופיה) בין ספל קפה וכעך שמדגימה כי שני הגופים הומיאומורפים, לשניהם טופולוגיה של טורוס. למעשה כדי ששני גופים יהיו הומיאומורפים אין צורך בדפורמציה רציפה, מספיק מיפוי והיפוך רציפים. המעבר בין הכעך לספל אינו אלא ארגון מחדש של הירעה מסביב לחור שבכעך בעזרת כיווץ ומתיחה מבלי לקרוע אותה או לחבר חלקים שלא היו מחוברים קודם.

ציקלואידה

עקומה שמתארת את מסלולה של נקודה קבועה על גבי מעגל המתגלגל ללא החלקה על גבי קו ישר. זה המסלול שפותר את בעיית הברכיסטוכרון, בעיית "הזמן הקצר ביותר".
קוביה (הקסהדרון)
קוביה (הקסהדרון)

הבעיות הגאומטריות של ימי קדם, שנוסחו על ידי היוונים הקדמונים, הן בעיות בנייה שיש לפתור באמצעות שימוש בסרגל ובמחוגה בלבד. הבעיות הן: בניית קובייה שנפחה כפול מזה של קובייה נתונה, חלוקת זווית נתונה לשלושה חלקים שוים, בניית ריבוע השווה בשטחו לעיגול נתון ובניית מצולע משוכלל בן שבע צלעות. רק במאה ה-19 הוכח בעזרת התורה המתמטית של הרחבת שדות שהבעיות אינן פתירות, אולם העיסוק בהן במשך השנים תרם רבות להתפתחות הגאומטריה.


מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.


ζ(s):=n=1ns=p ינושאר(1ps)1 נוסחת המכפלה של אוילר עבור פונקציית זטא של רימן. הנוסחה עומדת בבסיסה של תורת המספרים האנליטית ומאפשרת לקבל מידע רב על ההתפלגות של מספרים ראשוניים באמצעות אנליזה מרוכבת של פונקציית זטא של רימן.


במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.

האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The MacTutor History of Mathematics archive (באנגלית)

MacTutor הוא האתר האולטימטיבי למתעניינים בהיסטוריה של המתמטיקה. האתר מכיל מאות ביוגרפיות של מתמטיקאים, עשרות רבות של ערכים על נושאים בהיסטוריה של המתמטיקה, ערכים על עקומות מפרסמות, אגודות, פרסים ועוד. את האתר הקימו שני סקוטים נדיבים, פרופסורים למתמטיקה באוניברסיטת סנט אנדרוז, ג'ון אוקונור ואדמונד רוברטסון.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

פול הופמן, האיש שאהב רק מספרים - סיפורו של פאול ארדש וחיפושו אחר האמת המתימטית, תרגום: דרורה בלישה, הוצאת מטר, 2001.

הספר הוא ביוגרפיה של פאול ארדש, מתמטיקאי יהודי יליד הונגריה, שחי בארצות הברית, ובמדינות נוספות ובהן ישראל. ארדש עסק בעיקר בתורת המספרים ובמתמטיקה בדידה, ופרסם מעל ל-1,500 מאמרים בתחומים אלה, רובם הגדול עם מחברים-עמיתים.

מחבר הספר, פול הופמן, עוסק בפופולריזציה של המדע, כמנחה טלוויזיה, ככותב של ספרי מדע פופולרי וכעורך של כתב העת "דיסקבר".

משפטים מפורסמים
השערות מפורסמות

משפט בולצאנו-ויירשטראס באנליזה מתמטית קובע כי לכל סדרה אינסופית חסומה של נקודות ב-n קיימת תת-סדרה מתכנסת. ניסוח אחר (ושקול) של המשפט קובע כי לכל קבוצה אינסופית חסומה של נקודות ב-n קיימת נקודת הצטברות.

הרעיון האינטואיטיבי שעומד מאחורי המשפט הוא שאם קיימת קבוצה שיש בה אינסוף נקודות, והאיברים שלה לא יכולים "לברוח" רחוק מדי, לפחות חלק מהם אמורים להיות קרובים מאד זה לזה. המשפט מראה בצורה קונסרקטיבית כיצד ניתן למצוא את הסדרה או נקודת ההצטברות המבוקשות, אך זו אינה דרך מעשית, מאחר שהיא מבוססת על תהליך אינסופי של חלוקת הקטע החסום לחלקים קטנים והולכים.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה


מהו פורטל?רשימת כל קטגוריות המשנה והערכים