לדלג לתוכן

פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


משחק מגדלי האנוי עשוי עץ לבוד

מגדלי האנויאנגלית: Towers of Hanoi) הוא משחק חידה מתמטי, שמקורו בסוף המאה ה-19. המשחק הוא אמצעי הדגמה פופולרי לעקרון הרקורסיה ולמושגים בסיסיים אחרים בקומבינטוריקה ובמדעי המחשב.

המשחק כולל שלושה מוטות אנכיים ("המגדלים") ומספר דיסקיות בגדלים שונים שניתן להשחיל על המוטות. בתחילת המשחק, הדיסקיות מסודרות על פי הגודל על אחד המוטות, כשהגדולה ביותר למטה והקטנה ביותר למעלה.

מטרת המשחק היא להעביר את כל הדיסקיות למוט אחר, תחת שני החוקים הללו:

  • מותר להזיז רק דיסקית אחת בכל פעם - כלומר להוציאה מהמוט שבו היא נמצאת, ולהשחיל אותה על מוט אחר.
  • אסור לשים דיסקית על דיסקית שקטנה ממנה.

כאשר מקודדים כללים אלה בצורה גרפית, מתקבלת גרסה סופית של משולש סיירפינסקי.


אווריסט גלואה
אווריסט גלואה

אווריסט גלואהצרפתית: Évariste Galois;‏ 25 באוקטובר 1811 - 31 במאי 1832), מתמטיקאי צרפתי, ממייסדי תורת החבורות ומייסדה של תורת גלואה. שני תחומים מרכזיים אלו באלגברה מופשטת פותחו על ידי גלואה עוד בהיותו בשנות העשרה לחייו. גלואה לא זכה בחייו להכרה על עבודתו, שכן נהרג בדו-קרב קודם שהגיע לגיל 21.

הישגו הבולט ביותר היה פתרון בעיה שהטרידה את העולם המתמטי במשך מאות שנים - הוא הוכיח כי במקרה הכללי משוואות פולינומיות ממעלה חמישית ומעלה אינן ניתנות לפתרון באמצעות נוסחה שמערבת את ארבע פעולות החשבון והוצאות שורש בלבד, והראה מתי הדבר בכל זאת אפשרי.

בגיל 16, בלי לדעת על עבודתו של אָבֶּל בראשית הקריירה שלו, האמין לתומו גלואה שגילה את הבלתי אפשרי ופתר את המשוואה הכללית ממעלה החמישית, וחזר על אותו משגה. למשך זמן קצר האמין שחולל את הפלא, אך לבסוף הודה בטעותו. הייתה זו רק אחת משורת תופעות זהות בחייהם של גלואה ואבל, המתמטיקאי הנורווגי הצעיר שמת חסר כל בגיל 26.

זווית בגודל של רדיאן אחד נוצרת על ידי קשת שהיקפה שווה לאורך של רדיוס המעגל.

כיסוי האוריינטציות של טבעת מביוס.

כיסוי האוריינטציות הוא כלי לחקר יריעות לא אוריינטביליות. עבור משטח במרחב, ניתן לתאר את כיסוי האוריינטציות באופן הבא: נדמיין שהמשטח עשוי מנייר דו-שכבתי. נפריד את השכבות. היריעה שתתקבל תהיה מרחב הכיסוי של כיסוי האוריינטציות. העתקת הכיסוי תהיה ההדבקה של שתי השכבות בחזרה.

במקרה של טבעת מביוס (זאת אומרת טבעת עם חצי פיתול) היריעה המתקבלת לאחר הפרדת השכבות היא טבעת עם פיתול שלם. יריעה זאת דיפאומורפית לטבעת רגילה, ובפרט אוריינטבילית.

איור מקלדת פסנתר. הקלידים המפיקים תווים, ששמם "דו", נצבעו בצהוב.

הסולם המוזיקלי המפורסם, דו, רה, מי, פה, סול, לה, סי, דו, נקרא סולם דו מז'ור. כמו רבים מהסולמות המקובלים במוזיקה מערבית, הוא מכיל 8 תווים. לכן המוזיקאים מכנים את מרווח תווים, כמו זה שבין הדו הנמוך לדו הגבוה, במילה, שמשמעותה "שמיניה" – אוקטבה. אולם הם נוהגים לומר, שמרחק גובה הצליל, בין הדו הנמוך לדו הגבוה הוא 6 טון: 5 מהמרווחים בין התווים הנ"ל הם של טון 1, אך ה-2 האחרים, זה שבין המי לבין הפה וזה שבין הסי לבין הדו, הם רק של 1/2 טון. סך-הכול: 6.

כל הסולמות המקובלים במוזיקה מערבית מחלקים אוקטבות לתווים במרחקי גובה צליל, שהם מכפלות שלמות של 1/2 טון. לכן, כדי שהפסנתרן יוכל לנגן מנגינות בכל הסולמות האלו, יש במקלדת הפסנתר 12 קלידים בכל אוקטבה – בין צלילי כל זוג קלידים יש מרווח גובה של 1/2 טון. (סולם דו מז'ור מצריך רק את הקלידים הלבנים, וקלידי התוספת הם השחורים). לפי-כך, מקלדת הפסנתר היא תצוגה של סדרה חשבונית, שההפרש בין כל שני איברים (קלידים) סמוכים בה הוא 1/2 טון. אולם לאור העובדה, ששני צלילים, שמרווח הגובה ביניהם הוא 6 טון (אוקטבה), הם גלי קול, שתדירות אחד מהם היא פי 2 מתדירות השני, ניתן לראות במקלדת הפסנתר גם תצוגה של סדרה חשבונית. סדרה שהיחס בין תדר הצליל של כל שני איברים (קלידים) סמוכים בה הוא  212.


מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.


eiπ+1=0 זהות אוילר. זהות הקושרת בין חמישה קבועים מרכזיים במתמטיקה: 0, 1, i, π ו - e, באמצעות שלוש פעולות בסיסיות: חיבור, כפל וחזקה.


במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.

האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: NRICH (באנגלית)

אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

איאן סטיוארט, תיבת האוצרות המתמטיים של פרופסור סטיוארט, כנרת זמורה-ביתן דביר, 2012

כאשר היה פרופ' איאן סטיוארט, מתמטיקאי בריטי ידוע, בן ארבע עשרה, החל לרשום בפנקס רעיונות מתמטיים שנראו לו מעניינים ושלא נלמדו בבית הספר. עד מהרה נזקק לפנקס חדש, ובסופו של דבר לארונית שלמה. מתוכם, ברר סטיוארט כ-180 חידות, רעיונות, סיפורים ובדיחות מתמטיות, הפרוסות על פני כ-310 עמודים. בסוף הספר ישנן פתרונות לכל החידות עם מעט הסברים.

סגנון הכתיבה החופשי אפשר לסטיוארט להביא את דבריו באופן קליל, אשר יובנו גם למי שאינו עוסק בתחום ואינו מכיר את השיטות המתמטיות ודרכי ההוכחה מקובלות במחקר.

כפעם בפעם הוא מפנה לאתרי אינטרנט העוסקים בנושא הפרק שבו הוא דן, אך לרוב הוא אינו מפנה לביבליוגרפיה והמעוניינים בכך יצטרכו לחפש בעצמם.

משפטים מפורסמים
השערות מפורסמות

משפט החתונה, שמיוחס למתמטיקאי פיליפ הול, הוא משפט בקומבינטוריקה, שנותן תנאי הכרחי ומספיק לבחירת נציגים ייחודיים עבור משפחה של קבוצות.

נניח שיש לנו קבוצת נשים וקבוצת גברים וכל אישה מעוניינת בקבוצה חלקית כלשהי של הגברים. נשאלת השאלה, באילו תנאים ניתן לשדך לכל אישה גבר שהיא מעוניינת בו (באופן מונוגמי כמובן). ברור כי תנאי הכרחי הוא שמספר הגברים יהיה לפחות כמספר הנשים. ניתן להכליל דרישה זו לכל קבוצת נשים. כלומר, תנאי הכרחי הוא שכל k נשים תהינה מעוניינות בלפחות k גברים. משפט הול טוען כי תנאי זה הינו גם תנאי מספיק. נוסח לא פורמלי (אם כי מדויק לחלוטין) זה הוא שהעניק למשפט את כינויו.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה