פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
|
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
משפט קנטור הוא משפט מתמטי יסודי בתורת הקבוצות. באופן פורמלי, המשפט קובע שהעוצמה של כל קבוצה קטנה מהעוצמה של קבוצת התת-קבוצות שלה. משמעות המשפט היא שלכל קבוצה, אפילו אינסופית, יש קבוצה גדולה ממנה (במובן מדויק שיוגדר בהמשך). מסקנה מיידית היא שיש אינסוף גדלים אינסופיים השונים זה מזה, ואין אינסוף גדול ביותר. את המשפט הגה והוכיח אבי תורת הקבוצות, גאורג קנטור, בשנת 1891. שיטת הלכסון אותה המציא כדי להוכיח את המשפט ותוצאות דומות, מנצלת את הסתירות שביסוד פרדוקס הסַפָּר ופרדוקס השקרן, ומשמשת בתחומים רבים החורגים מתורת הקבוצות. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
ג'ון פורבס נאש הבן (13 ביוני 1928 - 23 במאי 2015), מתמטיקאי אמריקאי המתמחה בתורת המשחקים וגאומטריה דיפרנציאלית. בשנת 1994 קבל פרס נובל לכלכלה, עבור עבודתו החלוצית משנות ה-50 בתורת המשחקים. עם הישגיו האקדמיים הבולטים נמנים פתוח 'שיווי משקל נאש' ופתרון 'בעיית המיקוח של נאש', המהווים מושגי יסוד בפתרון בעיות 'משחקים שיתופיים' ו'משחקים אי-שיתופיים' בתורת המשחקים בתחומי הכלכלה, הביולוגיה ומדע המדינה. הקריירה האקדמית המזהירה של נאש עומדת בצל מחלת הסכיזופרניה, שבה לקה בסמוך לפריצתו כמתמטיקאי מחונן בשנות ה-50. בשל המחלה נפסקה הקריירה האקדמית של נאש למשך כ-30 שנה (1966-1996) ורק בשנות ה-90 שב לחקר המתמטיקה. נאש נולד בבלופילד שבמערב וירג'יניה, בן לג'ון נאש האב, טכנאי אלקטרוניקה, ווירג'יניה מרטין, מורה לשפות. בשנים (1945-1948) למד לתואר ראשון ושני במכון הטכנולוגי קרנגי בפיטסבורג, פנסילבניה (כיום אוניברסיטת קרנגי מלון), והוכתר על ידי מוריו כגאון. ב-1950 קבל נאש תואר דוקטור מאוניברסיטת פרינסטון על חיבורו "משחקים אי-שיתופיים". בעבודה זו פיתח לראשונה את פתרונו הבסיסי למשחקים אי-שיתופיים שזכה מאוחר יותר לכינוי 'שיווי משקל נאש'. 40 שנה מאוחר יותר, ב-1994, זיכתה אותו עבודתו זו משנותיו הראשונות בפרינסטון בפרס נובל לכלכלה. על עבודה זו קיבל נאש ב-1978 גם את פרס ג'ון פון ניומן לתאוריה. |
|
עריכהתמונה נבחרת
ההכללה למשפט פיתגורס מוזכרת כבר ב"יסודות" של אוקלידס; אם על צלעותיו של משולש ישר-זווית מונחות צורות דומות, סכום השטחים שעל שני הניצבים שווה לשטח הצורה שעל היתר.
בצורה פורמלית יותר: אם על צלעות משולש ישר-זווית שאורכי צלעותיו הם בונים צורות ששטחיהן A,B,C כך ש , אזי A+B=C. |
עריכהאנימציה נבחרת
|

ב-1897 נדונה בפרלמנט של מדינת אינדיאנה הצעת חוק פאי, שבין השאר קבעה את ערכו של פאי. עיקר החוק נגע לשיטתו של מתמטיקאי חובב לתרבוע העיגול באמצעות בנייה בסרגל ובמחוגה, וממנו נגזרו מספר ערכים שגויים לפאי, 3.2 למשל. חמש עשרה שנה לפני כן, פורסמה הוכחה שפאי הוא מספר טרנסצנדנטי, ולכן תרבוע העיגול בלתי אפשרי. למרות זאת, ההצעה אושרה בוועדת החינוך ואחר כך בבית הנבחרים, ואף עברה בקריאה ראשונה בסנאט של אינדיאנה. רק התערבותו המהירה של פרופסור למתמטיקה שנכח במקרה בבית המחוקקים מנעה את הפיכת ההצעה לחוק מחייב.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
נוסחת אוילר. נוסחה המבארת את מושג החזקה עבור מספרים מרוכבים.

חידת מונטי הול: בשעשעון טלוויזיה ישנן שלוש דלתות. מאחורי אחת מהן ישנו פרס גדול, ומאחורי כל אחת משתי האחרות יש עז. המשתתף מתבקש לבחור אחת מהדלתות, אבל לאחר הבחירה מנחה התוכנית אינו פותח את הדלת שנבחרה, אלא את אחת משתי הדלתות האחרות, ומראה למשתתף שמאחוריה יש עז. עכשיו המשתתף יכול לדבוק בבחירה המקורית שלו או להחליף לדלת השלישית שנותרה. מה עדיף לו לעשות?
| פתרון | |
|---|---|
|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: Plus (באנגלית) מגזין אינטרנט בריטי, שנועד לחשוף את הקורא לקסם של המתמטיקה, ועושה זאת בהצלחה רבה, באמצעות מאמרים, ראיונות, חידות ומשחקים. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: איאן סטיוארט, לאַלף את האינסוף - סיפורה של המתמטיקה, ספרי עליית הגג וידיעות ספרים, 2012 זהו מבוא פופולרי מקיף לתולדות המתמטיקה, מראשית ייצוגם של מספרים בפרהיסטוריה ועד להוכחת השערת פואנקרה בתחילת המאה ה-21. המחבר מציין: "רשימת הנושאים שאינם מופיעים בספר ארוכה יותר מרשימת אלה שכן מופיעים בו". תוצאה זו בלתי-נמנעת, בהתחשב ברוחב היריעה של המתמטיקה, אך הספר עוסק בקשת רחבה של נושאים, תוך הצגת המתמטיקאים, העצמים והרעיונות המרכיבים את ההיסטוריה של המתמטיקה. |
|
משפטים מפורסמים
|
השערות מפורסמות
|
אי-שוויון ברנולי הוא אי-שוויון יסודי ושימושי באנליזה מתמטית, המאפשר להעריך את הביטוי . האי-שוויון קובע ש- לכל מספר שלם ולכל מספר ממשי . את האי-שוויון אפשר להוכיח באינדוקציה.
בעזרת אי-שוויון זה אפשר להראות שהסדרה עולה בזמן שהסדרה יורדת, וכך להגדיר את בסיס הלוגריתם הטבעי, , כגבולן המשותף.
נושאים במתמטיקה
| ||
|---|---|---|
| כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
| שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
| מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
| מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
| מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
| יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
| מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
| עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | |
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|







