התפלגות בוז-איינשטיין
התפלגות בוז-איינשטיין (או סטטיסטיקת בוז-איינשטיין) היא פונקציית התפלגות סטטיסטית שבעזרתה ניתן לתאר תכונות של בוזונים (חלקיקים בעלי ספין שלם) זהים חסרי אינטראקציה. ההתפלגות קרויה על שם הפיזיקאי ההודי סאטינדרה נאת בוז, שפיתח אותה ב-1920 עבור פוטונים, ועל שם אלברט איינשטיין, שהכליל אותה עבור אטומים ב-1924.
באופן מפורש, האכלוס הממוצע של רמת אנרגיה מסוימת במערכת של בוזונים זהים הנמצאת בשיווי משקל תרמודינמי הוא
.
כאן
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n_{i} } הוא המספר הממוצע של חלקיקים שימצאו במצב ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {i}} .
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ g_{i} } היא דרגת הניוון של המצב ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {i}} .
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \epsilon_{i}} היא האנרגיה של המצב ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {i}} .
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu} הוא הפוטנציאל הכימי.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T} היא הטמפרטורה.
- הוא קבוע בולצמן.
הבוזונים הם חלקיקים בעלי פונקציית גל סימטרית. בניגוד לפרמיונים, המצייתים לעקרון פאולי ולהתפלגות פרמי-דיראק, הבוזונים יכולים להמצא באותו מקום ובאותו מצב שבו נמצאים חלקיקים זהים נוספים.
בשימוש בהתפלגות בוז-איינשטיין, ותוך ידיעת צפיפות המצבים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ g(\epsilon)} , ניתן לחשב תכונות תרמודינמיות שונות של המערכת. לדוגמה, האנרגיה הממוצעת נתונה על ידי:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ U = \int \epsilon g(\epsilon) n_{BE}(\epsilon) d\epsilon }
פיתוח
את התפלגות בוז-איינשטיין ניתן לקבל בקלות על ידי שימוש בצבר הגרנד קנוני. במסגרת צבר זה, ההסתברות למציאת מערכת במצב i עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N_i } חלקיקים ואנרגיה כוללת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E_i} נתונה על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_i = \frac{1}{\mathcal{Z}}e^{- \frac{(E_i-\mu N_i)}{k_BT}}} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{Z}=\sum_{i}e^{- \frac{(E_i-\mu N_i)}{k_BT}}} היא פונקציית החלוקה הגרנד-קנונית.
ניקח כמערכת רמת אנרגיה (חד-חלקיקית) מסוימת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} . אם אין אינטראקציה בין החלקיקים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E_i = n\epsilon} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n=N_i } הוא מספר החלקיקים הנמצאים ברמה זו. כאשר מדובר בבוזונים אין הגבלה על ערכי n כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n=0,1,\dots} . פונקציית החלוקה במקרה זה תהיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{Z}=\sum_n e^{-\beta(\epsilon-\mu)n}=\frac{1}{1-e^{-\beta(\epsilon-\mu)}}} . מכאן ניתן לקבל את מספר החלקיקים הממוצע על ידי שימוש ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lang n \rang = -\frac{\partial\Omega}{\partial\mu}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = -k_B T\ln\mathcal{Z} } .
ראו גם
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | ![]() |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע • חצי המעגל של ויגנר • התפלגות טרייסי-וידום | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • מקסוול-בולצמן • בוז-איינשטיין • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |
קישורים חיצוניים
- התפלגות בוז-איינשטיין, באתר אנציקלופדיה בריטניקה (באנגלית)
התפלגות בוז-איינשטיין29507848Q191076