התפלגות בוז-איינשטיין
התפלגות בוז-איינשטיין (או סטטיסטיקת בוז-איינשטיין) היא פונקציית התפלגות סטטיסטית שבעזרתה ניתן לתאר תכונות של בוזונים (חלקיקים בעלי ספין שלם) זהים חסרי אינטראקציה. ההתפלגות קרויה על שם הפיזיקאי ההודי סאטינדרה נאת בוז, שפיתח אותה ב-1920 עבור פוטונים, ועל שם אלברט איינשטיין, שהכליל אותה עבור אטומים ב-1924.
באופן מפורש, האכלוס הממוצע של רמת אנרגיה מסוימת במערכת של בוזונים זהים הנמצאת בשיווי משקל תרמודינמי הוא
.
כאן
- הוא המספר הממוצע של חלקיקים שימצאו במצב ה-.
- היא דרגת הניוון של המצב ה-.
- היא האנרגיה של המצב ה-.
- הוא הפוטנציאל הכימי.
- היא הטמפרטורה.
- הוא קבוע בולצמן.
הבוזונים הם חלקיקים בעלי פונקציית גל סימטרית. בניגוד לפרמיונים, המצייתים לעקרון פאולי ולהתפלגות פרמי-דיראק, הבוזונים יכולים להמצא באותו מקום ובאותו מצב שבו נמצאים חלקיקים זהים נוספים.
בשימוש בהתפלגות בוז-איינשטיין, ותוך ידיעת צפיפות המצבים , ניתן לחשב תכונות תרמודינמיות שונות של המערכת. לדוגמה, האנרגיה הממוצעת נתונה על ידי:
פיתוח
את התפלגות בוז-איינשטיין ניתן לקבל בקלות על ידי שימוש בצבר הגרנד קנוני. במסגרת צבר זה, ההסתברות למציאת מערכת במצב i עם חלקיקים ואנרגיה כוללת נתונה על ידי , כאשר היא פונקציית החלוקה הגרנד-קנונית.
ניקח כמערכת רמת אנרגיה (חד-חלקיקית) מסוימת . אם אין אינטראקציה בין החלקיקים כאשר הוא מספר החלקיקים הנמצאים ברמה זו. כאשר מדובר בבוזונים אין הגבלה על ערכי n כלומר . פונקציית החלוקה במקרה זה תהיה . מכאן ניתן לקבל את מספר החלקיקים הממוצע על ידי שימוש ב- כאשר .
ראו גם
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע • חצי המעגל של ויגנר • התפלגות טרייסי-וידום | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • מקסוול-בולצמן • בוז-איינשטיין • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |
קישורים חיצוניים
- התפלגות בוז-איינשטיין, באתר אנציקלופדיה בריטניקה (באנגלית)
התפלגות בוז-איינשטיין29507848Q191076