דטרמיננטה
באלגברה ליניארית, הדֵּטֶרְמִינַנְטָה של מטריצה ריבועית, היא סקלר התלוי ברכיבי המטריצה, ושווה לאפס אם ורק אם המטריצה אינה הפיכה.[1] יתרה מזו, כאשר הדטרמיננטה של מקדמי מערכת משוואות ליניאריות שונה מאפס, נוסחת קרמר מחשבת ממנה ומהדטרמיננטה של מטריצה קרובה, את הפתרון היחיד של המערכת. את הדטרמיננטה מסמנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A|} או .
הדטרמיננטה היא פונקציה כפלית (כלומר, ), ובעלת משמעות גאומטרית: אם היא מטריצה ריבועית בעלת מקדמים ממשיים, אז הדטרמיננטה שלה שווה לנפחו (המכוון) של המקבילון (במרחב האוקלידי ה--ממדי), שקודקודיו הם עמודות המטריצה (בתמונה).
היסטוריה
הדטרמיננטות מופיעות, בצורה לא מפורשת, כבר בלוחות חרס בבליים מן המאה השנייה לפני הספירה ואף לפני-כן, שם נעשה בהן שימוש לפתרון מערכות של שתי משוואות ליניאריות.
במאה ה-16 ניסח ג'ירולמו קרדאנו בעזרת דטרמיננטות את הפתרון למערכת של שתי משוואות בשני נעלמים; קרדנו הציג גרסה מוקדמת ולא מלאה של נוסחת קרמר, עבור מטריצות בגודל .
הנוסחה לדטרמיננטה של מטריצות גדולות יותר הופיעה באירופה וביפן בו זמנית, ב-1683. ביפן פרסם טאקאקזו סקי קווה (אנ') (1642-1708) הסבר על חישוב הדטרמיננטה של מטריצות מספריות מסדר המגיע עד , לצורך פתרון של משוואות שונות. באותה שנה, הציג לייבניץ את הנוסחה הכללית לחישוב דטרמיננטה מסדר , במכתב למרקיז דה לופיטל.
נוסחת קרמר הופיעה לראשונה, עבור מטריצות בגודל , בספר שפורסם ב-1748, כשנתיים לאחר מות המחבר קולין מקלורן. שנתיים אחר-כך פרסם גבריאל קרמר מאמר שבו תיאר בנספח, ללא הוכחה, את הכלל הקרוי על-שמו עבור מטריצות בגודל כלשהו.
לגראנז' הציג את הפירוש של דטרמיננטה (מסדר ) כאלמנט נפח, במאמר מ-1773 שעסק במכניקה. המונח דטרמיננטה מוצג לראשונה בספרו של גאוס על תורת המספרים; גאוס קרא לה כך משום שהיא קובעת (determines) את התכונות של התבניות הריבועיות שאותן חקר. עם זאת, הדטרמיננטה של גאוס אינה זהה להגדרה המקובלת היום. זו הופיעה בשם זה רק ב-1812, בעבודתו של קושי, שהוכיח לראשונה את הכלל החשוב .
הנושא הבשיל בשלושה מאמרים שפרסם יעקובי ב- 1841, בהם הוא הגדיר את הדטרמיננטה עבור מטריצה כללית ובאופן אלגוריתמי, שסייע לתפוצה הרחבה של הרעיון. את הסימון עבור הדטרמיננטה של הציע ארתור קיילי באותה שנה.
ב-1896 מיין פרדיננד פרובניוס את ההעתקות הליניאריות השומרות על הדטרמיננטה (במובן ש- לכל מטריצה ), והראה שכולן מהצורה או .
הגדרה "אקסיומטית", של הדטרמיננטה, כתבנית (היחידה) שהיא מולטי-ליניארית, אנטי-סימטרית ומנורמלת התגלתה על ידי קארל ויירשטראס, והתפרסמה ב-1903, לאחר מותו.
הגדרה
הדטרמיננטה של מטריצה בגודל מוגדרת על-פי הנוסחה הבאה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{1,\sigma(1)}A_{2,\sigma(2)}\cdots A_{n,\sigma(n)}} .
הסכום בנוסחה הוא על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n!} התמורות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} האפשריות של המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{1,2,\dots,n\right\}} . הסימן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{sgn}(\sigma)} מתקבל על פי זוגיות התמורה. אם התמורה זוגית, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{sgn}(\sigma)=1} , אם היא אי זוגית, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{sgn}(\sigma)=-1} . הדטרמיננטה שווה, אם כך, לסכום של כל המכפלות האפשריות לאורך אלכסונים מוכללים של המטריצה, עם סימנים מתחלפים.
לדטרמיננטה יש גם הגדרה אקסיומטית: אפשר לראות את הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \mapsto \det(A)} כפונקציה של העמודות של המטריצה, ואז זוהי הפונקציה היחידה שהיא ליניארית בכל המשתנים, מתחלפת (כלומר מחזירה 0 עבור מטריצה שיש בה שתי שורות זהות), ומנורמלת כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(I)=1} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} היא מטריצת היחידה. בלשון מודרנית, הגדרה זו שקולה לכך שפעולתה של טרנספורמציה ליניארית מממד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} על מכפלת היתד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^{\wedge n}} של המרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} (שהיא מרחב חד-ממדי) היא כפל בסקלר השווה לדטרמיננטה.
דוגמאות
דטרמיננטיות 2X2
במקרה של מטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\times 2} , נוסחת הדטרמיננטה היא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} a & b\\c & d \end{vmatrix}=ad - bc\ }
בפרט מתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} 1 & 2\\1 & 3 \end{vmatrix}= 1\cdot 3 - 2\cdot 1 = 1\ }
ולכן מטריצה זו הפיכה.
לעומת זאת המטריצה הבאה איננה הפיכה:
כעת, חישוב הדטרמיננטה ייתן אפס:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} 1 & 2\\2 & 4\end{vmatrix} = 1\cdot 4 - 2\cdot 2 = 0} ולכן מטריצה זו אינה הפיכה
חישוב הדטרמיננטה
דירוג המטריצה
הפיתוח לפי ההגדרה המפורשת דורש כ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\cdot n!} פעולות בשדה. לעומת שיטות אלה, שיטת הדירוג של גאוס מאפשרת לחשב את הדטרמיננטה בכ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^3} פעולות, על ידי דירוג המטריצה עד שמגיעים למטריצה משולשית: הדטרמיננטה של מטריצה משולשית שווה למכפלת איברי האלכסון הראשי שלה.
הדירוג נעשה על ידי הפעלת פעולות אלמנטריות בשרשרת, ואלו משפיעות על הדטרמיננטה באופן הבא:
- החלפת מקומן של שתי שורות (או עמודות) במטריצה משנה את סימן הדטרמיננטה: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A'} התקבלה מהמטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} על ידי החלפת שתי שורות, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A'|=-|A|} .
- הוספה של כפולה בסקלר של שורה (עמודה) אחת לשורה (עמודה) אחרת אינה משנה את ערך הדטרמיננטה של המטריצה המתקבלת.
- הכפלה של שורה (או עמודה) במטריצה בסקלר מכפילה את ערך הדטרמיננטה של המטריצה באותו סקלר: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A'} התקבלה מהמטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} על ידי הכפלת שורה כלשהי בסקלר , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A'|=\lambda|A|} .
פיתוח לפי מינורים
את הדטרמיננטה אפשר לחשב בצורה רקורסיבית, הנקראת פיתוח לפי מינורים. הדטרמיננטה של מטריצה בגודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\times 1} הוא האיבר היחיד שלה. כעת נראה כיצד ניתן לחשב דטרמיננטה מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\geq 2} . המינור של איבר במטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} הוא הדטרמיננטה של המטריצה המתקבלת על ידי מחיקת השורה והעמודה של אותו איבר מהמטריצה, כך שמתקבלת מטריצה בגודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n-1)\times (n-1)} (את הדטרמיננטה הזו, של מטריצה קטנה יותר, אנו כבר יודעים לחשב). נסמן את המינור המתקבל ממחיקת הרכיב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{ij}} (שהוא הרכיב ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (i,j)} של המטריצה) ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{ij}} . הדטרמיננטה ניתנת כעת לחישוב בצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(A) = \sum_{j=1}^{n} (-1)^{i+j}A_{ij}A^{ij}} -- זהו פיתוח לפי השורה ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} . פיתוח לפי העמודה ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} מתקבל מנוסחה דומה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(A) = \sum_{i=1}^{n} (-1)^{i+j}A_{ij}A^{ij}} .
לדוגמה, הפיתוח לפי השורה הראשונה של מטריצה מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 3} נותן את הנוסחה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \\ \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{vmatrix} } .
הסיבוכיות בשיטה זו דומה לחישוב הדטרמיננטה על-פי ההגדרה, ולכן אין לה ערך מעשי, אלא אם יש במטריצה שורה או עמודה שכמעט כולה אפסים. עם זאת יש בה תועלת תאורטית לא מבוטלת. לדוגמה, נובע ממנה בקלות (באינדוקציה) שהדטרמיננטה של המטריצה המשוחלפת שווה לזו של המטריצה המקורית.
תכונות
- הדטרמיננטה כפלית, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A\cdot B| = |A|\cdot|B|}
. לכן גם:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |tA| = t^n|A|} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} סקלר ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} הוא סדר המטריצה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} .
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A^{-1}| = \frac{1}{|A|}} , אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מטריצה הפיכה.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A^k|=|A|^k} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\geq1} טבעי.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A^{tr}| = |A|} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{tr}} היא המטריצה המשוחלפת של .
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A|=0} אם ורק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מטריצה שאינה הפיכה.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |adj(A)| = |A|^{n-1}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle adj(A)} היא המטריצה המצורפת של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} הוא סדר המטריצה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} .
משפט סילבסטר קובע שלכל שתי מטריצות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in M_{n \times k}(F)} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \in M_{k \times n}(F)} מתקיים השוויון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{det}(I_n-AB) = \operatorname{det}(I_k-BA)} .
הפירוש הגאומטרי של הדטרמיננטה
ניתן לראות בדטרמיננטה פונקציה של איברי המטריצה שערכה מבטא את פקטור ההגדלה הנפחית של הטרנספורמציה הליניארית המיוצגת על ידי המטריצה.
בצורה פורמלית, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} היא מטריצה ממשית מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} , אז כפל המטריצה בוקטורי הבסיס הסטנדרטי של המרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n} ייתן את ווקטורי העמודה של המטריצה:
פירוש הדבר הוא שהטרנספורמציה המיוצגת על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מעתיקה את קוביית היחידה ה-n ממדית למקבילון ה- ממדי שקואורדינטות קודקודיו מיוצגות על ידי ווקטורי העמודה של המטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n} , ואשר הפנים שלו מוגדר על ידי התחום: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P = \{ c_1 \mathbf{a}_1 +\cdots+c_n\mathbf{a}_n \mid 0 \leq c_i\leq 1 \ \forall i \}.} . הדטרמיננטה תיתן את הנפח המכוון של המקבילון הזה, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(A) = \pm \text{vol}(P)} (הסימן מראה האם הטרנספורמציה הליניארית משמרת או הופכת את אוריינטציית המקבילון[2]).
ניתן להיווכח בכך שהדטרמיננטה מקיימת את כל התכונות הנדרשות מפונקציית נפח - שכן פעולות אלמנטריות משנות את הדטרמיננטה באופן זהה לשינוי שהן גורמות לנפח המקבילון. הפעולה האלמנטרית של כפל שורה בסקלר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} שקולה להארכת אחת מצלעות המקבילון פי אותו פקטור; הפעולה מגדילה את שטח הפאה המכילה את הצלע באותו פקטור, ובאופן רקורסיבי פועלת כמתיחה בפקטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} על פנים המקבילון, באנלוגיה להליך חישוב הדטרמיננטה לפי מינורים. הוספת כפולה של שורה לשורה אחרת ניתנת לייצוג על ידי כפל במטריצה אלמנטרית השקולה להעתקת גזירה, ולכן פועלת כטרנספורמציה אשר משנה את זוויות המקבילון אך אינה משפיעה על נפחו (ככל גזירה).
בדרך זו ניתן גם להבין את מושג ההפיכות של מטריצה בצורה שונה; מטריצה מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} בעלת דטרמיננטה אפס מעתיקה את קוביית היחידה ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} ממדית למקבילון בעל נפח 0 שאינו יכול להיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} -ממדי, מה שמעיד על כך שממד התמונה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} נמוך מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . פירוש הדבר הוא ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מייצגת טרנספורמציה ליניארית שאינה על ואינה חד-חד ערכית, ולכן אין לה מטריצה הופכית (אין טרנספורמציה הופכית לטרנספורמציה שהיא מייצגת).
הדטרמיננטה באנליזה ווקטורית
בשל הפירוש הגאומטרי של הדטרמיננטה שצוין לעיל, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} קבוצה כלשהי במרחב הממשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n} , אז הנפח של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\cdot S} שווה לנפח של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} מוכפל בדטרמיננטה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} (עובדה המסבירה את הופעתו של היעקוביאן בחישובי אינטגרלים מרובים).
- באמצעות דטרמיננטה של מטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 3}
אפשר לרשום ביטוי שקל לזכור ומקל לחשב את המכפלה הווקטורית ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^3}
באופן הבא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec A\times\vec B= \begin{vmatrix} \hat x & \hat y & \hat z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \\ \end{vmatrix} =(A_yB_z-A_zB_y)\hat x-(A_xB_z-A_zB_x)\hat y+(A_xB_y-A_yB_x)\hat z }
הדטרמיננטה כפונקציית נפח
כפי שראינו עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מטריצה ממשית ריבועית מסדר 2, הדטרמיננטה שלה מייצגת את השטח של המקבילית הנפרשת על ידי ווקטורי השורות של A (או עמודותיה). למעשה, הגדירו את הדטרמיננטה של מטריצה כפונקציה שמקבלת מטריצה ומחזירה את "השטח המכוון" של המקבילון הנפרש על ידי השורות (עמודות) שלה. מי אמר שיש פונקציה יחידה כזאת? כפי שנראה, יש רק דרך אחת להגדיר פונקציה נפח וזאת הגדרת הדטרמיננטה שאותה אנו מכירים.
הגדרה
יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} שדה ותהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V:(F^{n})^{n} \to F} . נאמר ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} פונקציית נפח אם ורק אם
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} ליניארית בכל אחד מהמשתנים (מולטי - ליניאריות).
- לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1},a_{2},\dots,a_{n} \in F^{n}} , אם שניים מהם שווים אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(a_{1}, a_{2}, \dots, a_{n}) = 0} .
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(e_{1}, \dots, e_{n}) = 1} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_{1}, \cdots, e_{n}} הם איברי הבסיס הסטנדרטי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^{n}} .
(מן הליניאריות והתכונה השנייה נובע שאם B מתקבלת מ-A על ידי החלפת שתי שורות, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(B)=-V(A)} ).
נרשה לעצמנו להסתכל על איברים מ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_{n}(F)} כאל איברים מ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F^{n})^{n}} כך שכל מטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in M_{n}(F)} מיוצגת כאל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} -יה של ווקטורי השורות שלה. כך, נוכל להסתכל על כל פונקציית נפח כאל פונקציה מ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_{n}(F)} ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} באופן שתיארנו.
הוכחה
נסמן את שורותיה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1},\dots,a_{n}} (בהתאמה) ושל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_{1}, \dots,b_{n}} (גם בהתאמה). נניח ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} התקבלה מ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} על ידי החלפת השורה ה- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} עם ה- .
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(A)=V(a_{1},\dots,a_{i},\dots,a_{j},\dots,a_{n}) }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =V(a_{1},\dots,a_{i},\dots,a_{j},\dots,a_{n}) + 0 }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =^{2}V(a_{1},\dots,a_{i},\dots,a_{j},\dots,a_{n}) + V(a_{1},\dots,a_{i},\dots,a_{i},\dots,a_{n})}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =^{1} V(a_{1},\dots,a_{i},\dots,a_{j} + a_{i},\dots,a_{n}) }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle = V(a_{1},\dots,a_{i},\dots,a_{j} + a_{i},\dots,a_{n}) - 0}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =^{2} V(a_{1},\dots,a_{i},\dots,a_{j} + a_{i},\dots,a_{n}) - V(a_{1},\dots,a_{i} + a_{j},\dots,a_{j} + a_{i},\dots,a_{n})}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =^{1}V(a_{1},\dots,-a_{j},\dots,a_{j} + a_{i},\dots,a_{n})}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =^{1}-V(a_{1},\dots,a_{j},\dots,a_{j},\dots,a_{n}) -V(a_{1},\dots,a_{j},\dots,a_{i},\dots,a_{n})}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =^{2}0 -V(a_{1},\dots,a_{j},\dots,a_{i},\dots,a_{n}) }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-V(a_{1},\dots,a_{j},\dots,a_{i},\dots,a_{n})}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-V(b_{1},\dots,b_{i},\dots,b_{j},\dots,b_{n})=-V(B)}
מ.ש.ל.
כעת בהינתן פונקציית נפח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} ומטריצה ריבועית מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } , הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = (a_{ij})_{n \times n}} מעל שדה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} שאת שורותיה נסמן ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1}, \dots, a_{n}} בהתאמה
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(A) = V(a_{1}, a_{2}, \dots, a_{n}) =V(\sum_{x_{1}=1}^n a_{x_1,1}e_{x_1}, \sum_{x_{2}=1}^n a_{x_2,2}e_{x_2},\dots,\sum_{x_{n}=1}^n a_{x_n,n}e_{x_n}) =^{1}\sum_{1 \leq x_{1},\dots,x_{n} \leq n}a_{x_{1},1}\cdots a_{x_{n},n}V(e_{x_{1}},\dots,e_{x_{n}})}
ומתכונה 2 של פונקציית הנפח ניתן להיווכח כי מספיק לסכום על אוסף התמורות - הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{n} }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(A)=\sum_{\sigma \in S_{n}}a_{\sigma(1), 1}\cdots a_{\sigma(2),2}V(e_{\sigma(1)}, \dots,e_{\sigma(n)}) =^{*}\sum_{\sigma \in S_{n}}a_{\sigma(1), 1}\cdots a_{\sigma(2),2}\cdot sgn(\sigma)V(e_{1}, \dots,e_{n}) =^{3}\sum_{\sigma \in S_{n}}sgn(\sigma)a_{\sigma(1), 1}\cdots a_{\sigma(2),2} }
(*) - מחליפים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } שורות עד שמגיעים לרצף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e_{1},\dots, e_{n}) } ועם כל החלפה כופלים במינוס 1. מתכונות התמורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } הוא מספר ההיפוכים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } ולכן, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1)^{k} = sgn(\sigma) }
ובכך הוכח כי פונקציית נפח היא יחידה!
עדיין לא הוכחנו שבכלל קיימת פונק' נפח. ההוכחה מסורבלת אבל ניתן להוכיח שלכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n }
טבעי קיימת פונקציית נפח יחידה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{n} : M_{n}(F) \to F }
. ואם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\leq n}
לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq n }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{n} = \sum_{j=1}^n(-1)^{i + j}V_{n-1}(A_{j,i}^{M}) } כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{j,i}^{M} } היא המטריצה המתקבלת מ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} על ידי מחיקת השורה ה- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {i} } והעמודה ה- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle j } .
ראו גם
קישורים חיצוניים
- היסטוריה של מטריצות ודטרמיננטות
- גדי אלכסנדרוביץ', דטרמיננטות, באתר "לא מדויק"
- סרטונים המדגימים חישוב דטרמיננטה: פיתוח דטרמיננטה לפי שורה ראשונה ופיתוח דטרמיננטה לפי חוק סארוס
- דטרמיננטה, באתר אנציקלופדיה למתמטיקה (באנגלית)
- דטרמיננטה, באתר MathWorld (באנגלית)
- דטרמיננטה, באתר אנציקלופדיה בריטניקה (באנגלית)
- גורמים, דף שער בספרייה הלאומית
הערות שוליים
- ^ בדיקת ערך הדטרמיננטה של המטריצה של העתקה ליניארית, היא שיטה אלגוריתמית לוודא האם העתקה הפיכה.
- ^ שיקופים למשל, בשונה מסיבובים, אינם משמרים אוריינטציה של המקבילון.
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |
35661944דטרמיננטה