היפרקובייה
היפרקובייה או קוביית-על[1] היא הכללה של הצורה הגאומטרית קובייה לממדים רבים. למרות שנהוג להשתמש במושג היפרקובייה ביחס לקובייה ממימד גבוה מ-3, הגדרתה הפורמלית של היפרקובייה מתייחס לכל מימד, מ-0 ומעלה.
הקובייה המצויה היא היפרקובייה מממד 3. ריבוע הוא היפרקובייה מממד 2, וקטע הוא היפרקובייה מממד 1. הטסרקט הוא היפרקובייה מממד 4.
הגדרה פורמלית
ניתן להגדיר את ההיפרקובייה על ידי רקורסיה. לצורך ההגדרה נשתמש במספור בינארי.
עבור , ההיפרקובייה מכילה קודקוד בודד ומספרו יהיה ריק.
בהנחה שהגדרנו את ההיפרקובייה עבור המימד , ההיפרקובייה במימד , תוגדר כך:
ניקח שני עותקים של ההיפרקובייה עבור . נסמן אותם על ידי:
.
לכל קודקוד של העותק של ההיפרקובייה נוסיף ביט לראש המספור, ולכל קודקוד של העותק של ההיפרקובייה נוסיף ביט לראש המספור.
כעת נוסיף צלעות באופן הבא: קודקוד בעותק מחובר לקודקוד בעותק אם ורק אם המספור של השניים זהה, פרט לביט הראשון.
שימושים
במדעי המחשב נעשה שימוש במבנה ההיפרקובייה לצורך בניית רשתות מעבדים לעיבוד מקבילי. יתרונותיה של ההיפרקובייה, על פני רשתות מעבדים אחרות, הן הקוטר הנמוך שלה והגמישות הרבה בחלוקת הרשת לתתי רשתות.
מצולעים ופאונים | ||
---|---|---|
מושגים | מצולע • פאון • קודקוד • צלע • מקצוע • פאה • זווית חיצונית • אלכסון | |
מצולעים | ||
לפי מספר צלעות | משולש • מרובע • מחומש • משושה • משובע • מתומן | |
משולשים | משולש ישר-זווית • משולש שווה-שוקיים • משולש שווה-צלעות | |
מרובעים | מקבילית • טרפז • טרפז שווה-שוקיים • מרובע ציקלי • דלתון • דלתון ריצוף • מעוין • מלבן • ריבוע | |
כוכבים | פנטגרם • מגן דוד • אניאגרם | |
תכונות | מצולע משוכלל • מצולע שווה-צלעות • מצולע קמור • כוכב | |
פאונים | ||
פאונים משוכללים | ארבעון • קובייה • תמניון • תריסרון • עשרימון | |
פאונים ארכימדיים | ארבעון קטום • קובוקטהדרון • קובייה קטומה • תמניון קטום • רומביקובוקטהדרון • קובוקטהדרון קטום • קובייה מסותתת • איקוסידודקהדרון • דודקהדרון קטום • איקוסהדרון קטום • רומביקוסידודקהדרון • איקוסידודקהדרון קטום • דודקהדרון מסותת | |
פאונים אחרים | פירמידה • מנסרה • אנטי-מנסרה • מקבילון • מעוינון • תיבה • איקוסיטטרהדרון | |
תכונות | פאון משוכלל • פאון משוכלל למחצה • פאון ארכימדי | |
הכללות | ||
הכללות | סימפלקס • היפרקובייה • טסרקט |
קישורים חיצוניים
- היפרקובייה, באתר MathWorld (באנגלית)
הערות שוליים
היפרקובייה32029306Q213723