השערת הרצף
השערת הרצף היא טענה שהעלה אבי תורת הקבוצות, גאורג קנטור, לפיה עוצמת הרצף (מסומנת: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\aleph_0}} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\R|} ) היא העוצמה הקטנה ביותר האפשרית של קבוצה שאינה בת מנייה (אומגה אחת). במילים אחרות, שכל קבוצה אינסופית שאינה בת מנייה, היא לפחות בעלת עוצמת הרצף. מן ההשערה עולה שהעוצמה של תת-קבוצה של המספרים ממשיים יכולה להיות בדיוק אחת משלוש אפשרויות: סופית, אלף אפס או עוצמת הרצף.
השערה זו הייתה הראשונה ב־23 הבעיות של הילברט. אחרי עשרות שנים בהן הייתה בעיה פתוחה, הוכיחו קורט גדל ופול כהן כי היא אינה תלויה באקסיומות המקובלות של תורת הקבוצות, אקסיומות צרמלו-פרנקל (העקביות של תורת הקבוצות לא תינזק אם נוסיף אקסיומה הקובעת שההשערה נכונה, וגם לא אם נוסיף אקסיומה הקובעת שהיא אינה נכונה).
רקע
עוצמה היא דרך מדויקת להתייחס ל'גודל' של קבוצות אינסופיות. לשתי קבוצות יש אותה עוצמה אם אפשר לזווג את האיברים שלהן בזוגות: כל איבר בקבוצה אחת מתאים לאיבר בקבוצה השנייה. קנטור הראה כי עוצמתה של קבוצת המספרים הטבעיים, שמסומנת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph_0} , היא העוצמה האינסופית הקטנה ביותר. עוצמתה של קבוצת המספרים הממשיים, המכונה עוצמת הרצף ומסומנת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph} (או ), שווה לעוצמה של קבוצת כל תתי הקבוצות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}} (קבוצת המספרים הטבעיים), אותה מסמנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\aleph_0}} . קנטור הראה באמצעות שיטת האלכסון שפיתח, כי העוצמה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\aleph_0}} גדולה יותר מ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph_0} .
אף על פי שניסה, לא הצליח קנטור לבנות קבוצה שעוצמתה גדולה מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph_0} וקטנה מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\aleph_0}} , ולכן העלה את השערת הרצף שלפיה קבוצה כזו אינה קיימת. קנטור לא הצליח להוכיח השערה זו. אות לחשיבות שהייתה לבעיה זו בקרב המתמטיקאים ניתן לראות בכך שהבעיה הייתה הראשונה מבין 23 הבעיות הפתוחות שהילברט הציג בשנת 1900 בתור הבעיות המתמטיות החשובות של המאה ה-20.
בשנת 1935 פיתח קורט גדל את מושג הקבוצות הניתנות לבנייה, ושנתיים אחר-כך, ב-1937, הוא מצא דרך להיעזר במושג הזה כדי לפתור באופן חלקי את השערת הרצף: גדל הראה שאם מניחים שתורת הקבוצות (בניסוח המקובל שלה, צרמלו-פרנקל ובתוספת אקסיומת הבחירה) עקבית, אז התורה הכוללת בנוסף את השערת הרצף כאקסיומה, גם היא עקבית. מצד שני, בשנת 1963 הוכיח פול כהן שגם הוספת אקסיומה השוללת את השערת הרצף אינה מביאה למערכת לא עקבית, ולכן השערת הרצף עצמאית במסגרת תורת הקבוצות - אין אפשרות להוכיח אותה או את שלילתה על פי האקסיומות של תורה זו. כדי להוכיח משפט זה פיתח פול כהן את שיטת הכפייה (Forcing).
גרסאות שקולות
ב-1943 הוכיחו פאול ארדש ושיזו קקוטני[1] שהשערת הרצף נכונה אם ורק אם אפשר לפרק את הממשיים למספר בן-מנייה של קבוצות, שכל אחת מהן היא קבוצה בלתי תלויה מעל הרציונליים. תכונה זו אפשר לנסח גם כך: השערת הרצף שקולה לכך שקיימת צביעה של הממשיים במספר בן-מנייה של צבעים, כך שלמשוואה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle w+x=y+z} לא קיים פתרון במספרים ממשיים שווי-צבע ושונים.
עוצמות ביניים
השערת הרצף נחקרת בין השאר באמצעות עוצמות מוגדרות, שערכן תלוי במערכת האקסיומות. כמה עוצמות כאלה מוגדרות באמצעות המבנה של אוסף תת-הקבוצות האינסופיות של המספרים הטבעיים. למשל, אומרים שתת-קבוצה אינסופית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מפצלת תת-קבוצה אינסופית , אם גם החיתוך וגם ההפרש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \setminus A} הם אינסופיים. האינווריאנט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{s}} מוגדר כעוצמה הקטנה ביותר של אוסף תת-קבוצות אינסופיות, שיש בו חבר המפצל כל תת-קבוצה אינסופית נתונה. האינווריאנט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{r}} מוגדר כעוצמה הקטנה ביותר של אוסף תת-קבוצות אינסופיות שאין אף תת-קבוצה אינסופית המפצלת את כולן. ברור ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph_0 \leq \mathfrak{r},\mathfrak{s} \leq 2^{\aleph_0}} . יש מודל של ZFC שבו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph_1 = \mathfrak{r} < \mathfrak{s} = \mathfrak{c} = \aleph_2} .
השערת הרצף המוכללת
השערת הרצף המוכללת (GCH) אומרת שבין עוצמה אינסופית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |S|} לעוצמת קבוצת החזקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{|S|}} (הגדולה ממנה לפי משפט קנטור), אין אף עוצמות אחרות.
השערת הרצף המוכללת חזקה די הצורך לגרור גם את אקסיומת הבחירה[2]. ההוכחה מתבססת על מספרי הרטוג.
השערת הרצף המוכללת מתקיימת במודל הקבוצות הניתנות לבנייה ולכן במובן מסוים "קל" להראות את העקביות שלה. בנוסף, עבור מודל התחלתי כלשהו של ZFC, קיימת כפייה שמובילה למודל שמקיים את השערת הרצף.
במונים סדירים, משפט איסטון מראה כי ניתן באמצעות כפייה להפר את השערת הרצף כרצוננו כאשר האילוצים היחידים שצריכים להתקיים הם:
- המונוטוניות של פונקציית הרצף: אם אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\kappa} \le 2^{\lambda}}
- משפט קניג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{cf} ( 2^\kappa) > \kappa} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle cf} היא הקופינליות של הסודר.
הוכחת העקביות של הפרת השערת הרצף המוכללת, באופן לא טריוויאלי, במונים חריגים היא קשה בהרבה ודורשת הנחת מונים גדולים. למשל כדי לבנות מודל בו מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\aleph_\omega} > \aleph_{\omega + 1}, \forall n < \omega \,\,2^{\aleph_n} < \aleph_\omega} חייבים להניח קיום מונה חזק יותר ממונה מדיד. ראו השערת המונה החריג.
ראו גם
קישורים חיצוניים
- השערת הרצף, באתר MathWorld (באנגלית)
- השערת הרצף, באתר אנציקלופדיה בריטניקה (באנגלית)
הערות שוליים
- ^ On non-denumerable graphs, Bull. Amer. Math. Soc. 49, (1943). 457–461.
- ^ מאמר המתאר את ההוכחה שהשערת הרצף המוכללת גוררת את אקסיומת הבחירה (אנגלית)
נושאים בתורת הקבוצות | ||
---|---|---|
מושגי יסוד | תורת הקבוצות הנאיבית • תורת הקבוצות האקסיומטית • קבוצה • יחידון • הקבוצה הריקה • קבוצת החזקה | |
פעולות | איחוד • חיתוך • משלים • הפרש סימטרי • מכפלה קרטזית | |
יחסים | יחס • יחס רפלקסיבי • יחס סימטרי • יחס אנטי-סימטרי • יחס טרנזיטיבי • יחס שקילות • יחס הופכי | |
פונקציות | פונקציה • פונקציה חד-חד-ערכית • פונקציה על • פונקציה חד-חד-ערכית ועל • פונקציית הזיווג של קנטור | |
משפטים | האלכסון של קנטור • משפט קנטור-שרדר-ברנשטיין • הלמה של צורן • משפט הסדר הטוב | |
סדר | סדר חלקי • סדר מלא • סדר טוב • טיפוס סדר • מספר סודר | |
עוצמות | עוצמה • קבוצה בת מנייה • קבוצה שאינה בת מנייה • עוצמת הרצף | |
אקסיומות | אקסיומת ההיקפיות • אקסיומת האיחוד • אקסיומת הקבוצה האינסופית • אקסיומת ההחלפה • אקסיומת קבוצת החזקה • אקסיומת היסוד • אקסיומת הבחירה | |
שונות | הפרדוקס של ראסל • השערת הרצף |
23 הבעיות של הילברט | ||
---|---|---|
דויד הילברט | ||
בעיות פתורות (פותרים) | השערת הרצף (גדל, כהן) • הבעיה השנייה של הילברט (גדל, גנצן) • השלישית (דן) • השביעית (גלפונד, שניידר) • העשירית • השלוש-עשרה (ארנולד) • הארבע-עשרה (נגטה) • השבע-עשרה (ארטין) • התשע-עשרה (דה ג'יורג'י, נאש) • העשרים • העשרים ואחת • העשרים ושתיים | |
בעיות פתורות חלקית (פותרים) | הבעיה הרביעית של הילברט • החמישית (גליסון) • התשיעית (ארטין) • האחת-עשרה (הסה) • החמש-עשרה • השמונה-עשרה | |
בעיות פתוחות | הבעיה השישית של הילברט • השמינית • השתים עשרה • השש-עשרה • העשרים ושלוש | |
בעיות המילניום של מכון קליי • בעיות לנדאו |
השערת הרצף38335069Q208416