פונקציות זוגיות ואי-זוגיות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

פונקציות זוגיות ואי-זוגיות הן פונקציות ממשיות בעלות סימטריה מוגדרת ביחס לישר  x=0 (כלומר לציר ה-Y).

פונקציה זוגית

הגדרה: ערכה זהה עבור כל מספר בתחום ההגדרה ועבור המספר הנגדי לו, כלומר  f(x)=f(x).

סימטריה: כל פונקציה זוגית היא סימטרית ביחס לציר ה-Y.

דוגמאות של פונקציות זוגיות:

פונקציה אי-זוגית

הגדרה: ערכה עבור כל מספר בתחום ההגדרה הוא המספר הנגדי של ערכה עבור המספר הנגדי לו, כלומר  f(x)=f(x).

סימטריה: כל פונקציה אי-זוגית היא אנטי-סימטרית ביחס לציר ה-X (כלומר יש לה סימטריית סיבוב של 1800 סביב לראשית).

דוגמאות של פונקציות אי-זוגיות:

פונקציה כללית

ניתן לייצג כל פונקציה באמצעות סכום של פונקציה זוגית ואי זוגית:  f(x)=feven(x)+fodd(x)

וזאת כאשר: feven(x)=f(x)+f(x)2 ו fodd(x)=f(x)f(x)2


יצוג זה הוא יחיד. מכאן נובע שמרחב הפונקציות כולן מהווה סכום ישר של מרחבי הפונקציות הזוגיות והאי-זוגיות (כשחיבור וכפל בסקלר מוגדרים נקודתית).

לפעמים, עבור פונקציות מרוכבות, הפונקציה הזוגיות והאי זוגית מיוצגים בהתאמה באופן הבא:
feven(x)=f(x)+f*(x)2 ו-fodd(x)=f(x)f*(x)2
או:
feven(x)=feven*(x) ו-fodd(x)=fodd*(x)

בצורת כתיבה זאת ניתן להוכיח בקלות רבה תכונות של התמרת פורייה.

תכונות

  • סכום פונקציות:
    • סכום של פונקציות זוגיות הוא פונקציה זוגית (בפרט, בפתוח של פונקציה אנליטית זוגית לטור טיילור יופיעו רק חזקות זוגיות ובפתוח של פונקציה זוגית מ-L1 לטור פורייה יופיעו רק איברי הקוסינוס).
    • סכום של פונקציות אי-זוגיות הוא פונקציה אי-זוגית (בפרט, בפתוח של פונקציה אנליטית אי-זוגית לטור טיילור יופיעו רק חזקות אי-זוגיות ובפתוח של פונקציה אי-זוגית מ-L1 לטור פורייה יופיעו רק איברי הסינוס).
  • מכפלת פונקציות:
    • מכפלה של פונקציה זוגית בפונקציה זוגית היא פונקציה זוגית.
    • מכפלה של פונקציה אי-זוגית בפונקציה אי-זוגית היא פונקציה זוגית.
    • מכפלה של פונקציה זוגית בפונקציה אי-זוגית היא פונקציה אי-זוגית.
  • חלוקת פונקציות:
    • מנה של פונקציה זוגית בפונקציה זוגית היא פונקציה זוגית.
    • מנה של פונקציה אי-זוגית בפונקציה אי-זוגית היא פונקציה זוגית.
    • מנה של פונקציה זוגית בפונקציה אי-זוגית היא פונקציה אי-זוגית.

באופן כללי כל מכפלה הכוללת פונקציות זוגיות ולא זוגיות בלבד (הפונקציה x1 היא לא זוגית), הפונקציות הזוגיות משמרות את הזוגיות, והזוגיות תלויה האם מספר הפונקציות האי זוגיות זוגי או לא זוגי.

  • הרכבת פונקציות:
    • הרכבה הכוללת פונקציות זוגיות ולא כוללת פונקציות כלליות היא פונקציה זוגית.
    • הרכבה של פונקציות אי-זוגיות היא פונקציה אי-זוגית.
    • הרכבה של כל פונקציה עם פונקציה זוגית היא זוגית, אך הרכבה של פונקציה זוגית על פונקציה כללית אינה בהכרח זוגית.
  • גזירת פונקציה:
    • נגזרת של פונקציה זוגית היא פונקציה אי-זוגית (אם אינה אפס).
    • נגזרת של פונקציה אי-זוגית היא פונקציה זוגית.
    • נגזרת של פונקציה כללית היא פונקציה כללית או זוגית.

הוכחה:הגדרת הנגזרת בנקודה x0, היא הגבול limΔx0ΔyΔx=f(x0).

ניתן להגדיר את Δx כ-xx0 ואת Δy כ-f(x)f(x0)

כעת נציב בגבול: limxx0f(x)f(x0)xx0. נראה שאם נחליף את הסימן של x ושל x0 נקבל לפונקציה זוגית, limxx0f(x)f(x0)(x)(x0) כלומר שסימן הגבול התחלף. ולפונקציה אי זוגית נקבל, limxx0(f(x))(f(x0))(x)(x0) כלומר שסימן הגבול נשמר.

  • אינטגרל של פונקציה:
    • כל פונקציה קדומה של פונקציה אי-זוגית היא פונקציה זוגית.
    • לפונקציה זוגית יש פונקציה קדומה אחת שהיא אי-זוגית - הפונקציה שבה המקדם החופשי שווה ל-0. שאר הפונקציות הקדומות הן כלליות.
    • האינטגרל המסוים של פונקציה אי-זוגית בתחום סימטרי שווה לאפס.
    • האינטגרל המסוים של פונקציה זוגית בתחום סימטרי שווה לפעמיים האינטגרל בחצי התחום הסימטרי.
  • תכונת האפס: כל פונקציה אי זוגית המוגדרת ורציפה בנקודה x=0 חייבת לקיים  f(0)=0.

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

פונקציות זוגיות ואי-זוגיות28697272Q126592