כפל
בערך זה |
כֶּפֶל הוא פעולה בין מספרים, ובאופן כללי יותר פעולה בינארית על מבנים אלגבריים כלליים. כפל הוא אחד מארבע פעולות החשבון (יחד עם חיבור, חיסור, וחילוק). כמה מהתכונות הבסיסיות של כפל של מספרים משמשות מודל אקסיומטי למבנים אלגבריים מרכזיים, כמו חבורות או חוגים.
כפל של מספרים טבעיים הוא למעשה פעולת חיבור חוזרת: 4 כפול 3 הוא הסכום , ובאופן כללי "a כפול b" הוא a פעמים b, כלומר b ועוד b ועוד b וכן הלאה, a פעמים או הסכום של a קבוצות שגודל כל אחת מהן הוא b. במערכת פאנו המייצגת את המספרים הטבעיים, הכפל מוגדר באינדוקציה בעזרת פעולת החיבור: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a\cdot 0 = 0} , ו- .
את פעולת הכפל של המספרים הטבעיים אפשר להכליל למערכות מספרים גדולות יותר: במספרים הרציונליים הכפל של השברים ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{c}{d}} הוא השבר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{a\cdot c}{b \cdot d}} . במספרים המרוכבים הכפל נובע מן הדיסטריבוטיביות ביחס לחיבור ומההנחה ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i\cdot i = -1} כי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (a+bi)\cdot (c+di) = (a\cdot c - b \cdot d) + (a \cdot d + b \cdot c) i} .
השטח של מלבן מוגדר כמכפלת האורך שלו ברוחב או כמכפלת הרוחב שלו באורך - בשתי הדרכים נקבל אותה תוצאה. באותו אופן אפשר להגדיר גם נפח של תיבה (מכפלת האורך, הרוחב והגובה), ואף נפחים בממימד גבוה יותר.
המספרים שמוכפלים נקראים "גורמים" או "מספרים נכפלים". באלגברה, המספר המכפיל משתנה (למשל 3 ב-3xy2) נקרא מקדם. הפעולה ההפוכה לכפל היא החילוק: אומרים ש-"a לחלק ל-b הם c" אם b כפול c שווה ל-a.
במבנים אלגבריים שיש בהם פעולה אחת, כמו חבורה למחצה, מונואיד או חבורה, מקובל לקרוא לפעולה הבינארית "כפל" גם אם אין לה דבר עם פעולת הכפל של מספרים. בדומה לזה, במבנים שיש בהם שתי פעולות, כמו חוג או שדה, מקובל לקרוא לפעולות "חיבור" ו"כפל". כמעט כל המבנים האלה נוצרו כמודלים לטיפול בקבוצות מסוימות של מספרים, ולכן נשמר שמן המקורי של הפעולות.
סימון ומונחים
את הכפל מסמנים בסימן "הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times} " או בסימן "·" בין הגורמים המוכפלים. לדוגמה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\times 3 = 6} (במילים, "שתי פעמים 3 שווה ל-6", או "שתיים כפול שלוש שווה ל-6"). לפי כללי קדימות אופרטורים הכפל קודם לחיבור ולחיסור בסדר הפעולות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a\times b+c = (a\times b)+c} . הכפל הוא אסוציאטיבי, ולכן אין צורך להנחות באמצעות סוגריים בביטוי שיש בו כמה פעולות כפל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,1\times 2\times 3\times 4\times 5 = 120} . באלגברה משמיטים לפעמים את סימן הכפל כליל, ורישום משתנים בסמיכות מייצג כפל שלהם (למשל XY שווה ל-X פעמים Y, ו-5X שווה לחמש פעמים X).
בשפות תכנות רבות מסומנת פעולת הכפל בכוכבית (כמו ב 2*5) מכיוון שהיא מופיעה בכל סוגי לוחות המקשים. החלה בכך שפת התכנות Fortran.
הסימון לכפל גורמים רבים
כפל סדרתי של איברים מסומן בסימן הַמַּכְפֵּלָה, שהוא האות Π (פאי) גדולה באלפבית היווני: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=m}^{n} x_{i} = x_{m} \cdot x_{m+1} \cdot x_{m+2} \cdot \,\,\cdots\,\, \cdot x_{n-1} \cdot x_{n}. } . הציון התחתי (במקרה זה, האות i) מציין פרמטר, המופיע עם הגבול התחתי (m), ואילו הכתב העילי מציין את הגבול העליון (n). ערך הביטוי הוא המכפלה של הגורמים עבור ערכי הפרמטר מן הגבול התחתון לעליון. לדוגמה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=2}^{6} \left(1 + {1\over i}\right) = \left(1 + {1\over 2}\right) \cdot \left(1 + {1\over 3}\right) \cdot \left(1 + {1\over 4}\right) \cdot \left(1 + {1\over 5}\right) \cdot \left(1 + {1\over 6}\right) = {7\over 2}. } . במקרה ש-m = n, התוצאה של המכפלה היא xm. אם m > n, זוהי מכפלה ריקה, ומוסכם שערכה 1.
בעוד שמכפלות סופיות אפשר להגדיר באינדוקציה, המכפלה האינסופית (שבה הגבול העליון, למשל, הוא אינסוף), אינה מוגדרת בכל מקרה. כאשר מכפילים מספרים ממשיים, המכפלה האינסופית מוגדרת כגבול של סדרת המכפלות הסופיות, כאשר n שואף לאינסוף. כלומר, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=m}^{\infty} x_{i} = \lim_{n\to\infty} \prod_{i=m}^{n} x_{i}. } .
תכונות של פעולת הכפל
לפעולת הכפל בין מספרים תכונות אלגבריות חשובות:
- כפל הוא פעולה אסוציאטיבית, אין חשיבות למיקום הסוגריים בכפל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x\cdot y)\cdot z = x\cdot(y\cdot z)} .
- כפל הוא פעולה קומוטטיבית, אין חשיבות לסדר המוכפלים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x\cdot y = y \cdot x} .
- יש איבר יחידה ביחס לכפל, המספר 1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\cdot x = x\cdot 1 = x} .
- חל חוק הצמצום על מספרים ששונים מ-0: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot y = x\cdot z} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ne 0} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=z} .
- ביחס ל-0 מתקיים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x \cdot 0 = 0 \cdot x = 0} .
- מתקיים חוק הפילוג: .
- כפל ב--1 נותן את המספר הנגדי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, (-1)\cdot x = -x} .
- מכפלה של מספרים חיוביים היא מספר חיובי; הכפל במספר חיובי שומר על יחס הסדר (היחס >), בעוד שכפל במספר שלילי הופך את הסדר.
- לכל מספר שונה מ-0 יש מספר הופכי: לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ne 0} קיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle xy=1} . תכונה זו מתקיימת בכפל בשדה המספרים הרציונליים ובשדה המספרים הממשיים, אך אינה מתקיימת בכפל בקבוצת המספרים הטבעיים ובחוג המספרים השלמים.
הוכחה
נוכיח קודם כל את התכונות במספרים הטבעיים, באינדוקציה מתמטית. נעשה שימוש בהגדרה הרקורסיבית: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}x\cdot0&=0\\ x\cdot(y+1)&=xy+x\end{align}} .
- אסוציאטיביות: עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=0} נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(y\cdot0)=x\cdot0=0=(xy)\cdot0} . נניח עבור z. נקבל עבור z+1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(y(z+1))=x(yz+y)=x(yz)+xy=(xy)z+xy=(xy)(z+1)} . (עשינו שימוש בתכונת הפילוגיות, שתוכח בהמשך)
- קומוטטיביות: עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0} נוכיח באינדוקציה על x ש- ונקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot0=0\cdot x} : עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\cdot0=0} . נניח עבור x. נקבל עבור x+1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\cdot(x+1)=0\cdot x+0=0+0=0} . כעת נניח שעבור y מתקיימת הקומוטטיביות. נקבל עבור y+1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(y+1)=xy+x=yx+x} . נוכיח באינדוקציה על x שמתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\cdot x=x} : עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\cdot0=0} . נניח עבור x. נקבל עבור x+1: . כעת נחזור לביטוי הקודם ונקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(y+1)=yx+x=yx+1\cdot x=(y+1)x} (שוב עשינו שימוש בפילוגיות).
- איבר יחידה: נובע מההגדרה ומהקומוטטיביות.
- את חוק הצמצום נוכיח במסגרת המספרים הרציונליים, ובפרט הוא יתקיים גם לטבעיים.
- חוק הפילוג: נוכיח את חוק הפילוג השמאלי. מכיוון שבהוכחת הקומוטטיביות השתמשנו רק בו, נוכל להשתמש בה כדי להוכיח את השמאלי.
- עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=0} נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(y+0)=xy=xy+0=xy+x\cdot0} . נניח עבור z. נקבל עבור z+1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(y+(z+1))=x((y+z)+1)=x(y+z)+x\cdot1=xy+xz+x=xy+x(z+1)} .
- כפל ב-1: אינו מספר טבעי.
- אין איבר הופכי בטבעיים.
מערכות מספרים אחרות
- חוג המספרים השלמים: נשתמש בבנייה פורמלית של המספרים השלמים, כמחלקות שקילות של היחס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)\sim(c,d)\Leftrightarrow a+d=b+c} על הקבוצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \N\times\N} , כאשר הכפל מוגדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(c,d)]:=[(ac+bd,ad+bc)]} , והחיבור מוגדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]+[(c,d)]=[(a+c,b+d)]} :
- אסוציאטיביות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}&[(a,b)]\cdot([(c,d)]\cdot[(e,f)])=[(a,b)]\cdot[(ce+df,cf+de)]=[(ace+adf+bcf+bde,acf+ade+bce+bdf)]=[(ac+bd,ad+bc)]\cdot[(e,f)]\\&=([(a,b)]\cdot[(c,d)])\cdot[(e,f)]\end{align}}
- קומוטטיביות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(c,d)]=[(ac+bd,ad+bc)]=[(ca+db,da+cb)]=[(c,d)]\cdot[(a,b)]}
- איבר יחידה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot1=[(a,b)]\cdot[(1,0)]=[(a+0\cdot b,a\cdot0+b)]=[(a,b)]}
- חוק הפילוג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}&[(a,b)]\cdot([(c,d)]+[(e,f)])=[(a,b)]\cdot[(c+e,d+f)]=[(ac+ae+bd+bf,ad+af+bc+be)]=[(ac+bd,ad+bc)]+[(ae+bf,af+be)]\\&=[(a,b)]\cdot[(c,d)]+[(a,b)]\cdot[(e,f)]\end{align}}
- כפל ב-1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(0,1)]=[(b,a)]=-[(a,b)]}
- אין הופכי בשלמים.
- שדה המספרים הרציונליים: נשתמש בבנייה פורמלית של המספרים הרציונליים, כמחלקות שקילות של היחס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)\sim(c,d)\Leftrightarrow ad=bc} על הקבוצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Z\times(\Z\setminus\{0\})} , כאשר הכפל מוגדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(c,d)]=[(ac,bd)]} והחיבור מוגדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]+[(c,d)]=[(ad+bc,bd)]} :
- אסוציאטיביות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot([(c,d)]\cdot[(e,f)])=[(a,b)]\cdot[(ce,df)]=[(ace,bdf)]=[(ac,bd)]\cdot[(e,f)]=([(a,b)]\cdot[(c,d)])\cdot[(e,f)]}
- קומוטטיביות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(c,d)]=[(ac,bd)]=[(ca,db)]=[(c,d)]\cdot[(a,b)]}
- איבר יחידה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(1,1)]=[(a,b)]}
- חוק הצמצום: נשתמש בכך שיש הופכי (יוכח בהמשך) ונקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle xy=xz\Rightarrow x^{-1}xy=x^{-1}xz\Rightarrow y=z} .
- חוק הפילוג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}&[(a,b)]\cdot([(c,d)]+[(e,f)])=[(a,b)]\cdot[(cf+de,df)]=[(acf+ade,bdf)]=[(acbf+adbe,bdbf)]=[(ac,bd)]+[(ae,bf)]\\&=[(a,b)]\cdot[(c,d)]+[(a,b)]\cdot[(e,f)]\end{align}}
- כפל ב-1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(-1,1)]=[(-a,b)]=-[(a,b)]}
- מספר הופכי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(a,b)]\cdot[(b,a)]=[(ab,ba)]=[(1,1)]=1}
- שדה המספרים הממשיים: נשתמש בבנייה פורמלית של המספרים הממשיים כמחלקות שקילות של היחס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{x_n\}^\infty_{n=1}\sim\{y_n\}^\infty_{n=1}\Leftrightarrow\forall\varepsilon>0\exist N,\forall n>N,|x_n-y_n|<\varepsilon} על סדרות קושי של מספרים רציונליים, כאשר הכפל מוגדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\{x_n\}^\infty_{n=1}]\cdot[\{y_n\}^\infty_{n=1}]=[\{x_n\cdot y_n\}^\infty_{n=1}]} והחיבור מוגדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\{x_n\}^\infty_{n=1}]+[\{y_n\}^\infty_{n=1}]=[\{x_n+y_n\}^\infty_{n=1}]} :
- אסוציאטיביות:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}&[\{x_n\}^\infty_{n=1}]\cdot([\{y_n\}^\infty_{n=1}]\cdot[\{z_n\}^\infty_{n=1}])=[\{x_n\}^\infty_{n=1}]\cdot[\{y_n\cdot z_n\}^\infty_{n=1}]=[\{x_n\cdot(y_n\cdot z_n)\}^\infty_{n=1}]=[\{(x_n\cdot y_n)\cdot z_n\}^\infty_{n=1}]=[\{x_n\cdot y_n\}^\infty_{n=1}]\cdot[\{z_n\}^\infty_{n=1}]\\&=([\{x_n\}^\infty_{n=1}]\cdot[\{y_n\}^\infty_{n=1}])\cdot[\{z_n\}^\infty_{n=1}]\end{align}}
- קומוטטיביות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\{x_n\}^\infty_{n=1}]\cdot[\{y_n\}^\infty_{n=1}]=[\{x_n\cdot y_n\}^\infty_{n=1}]=[\{y_n\cdot x_n\}^\infty_{n=1}]=[\{y_n\}^\infty_{n=1}]\cdot[\{x_n\}^\infty_{n=1}]}
- איבר יחידה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\{x_n\}^\infty_{n=1}]\cdot[\{1\}^\infty_{n=1}]=[\{x_n\cdot1\}^\infty_{n=1}]=[\{x_n\}^\infty_{n=1}]}
- חוק הצמצום: באותה דרך כמו ברציונליים
- חוג הפילוג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}&[\{x_n\}^\infty_{n=1}]\cdot([\{y_n\}^\infty_{n=1}]+[\{z_n\}^\infty_{n=1}])=[\{x_n\}^\infty_{n=1}]\cdot[\{y_n+z_n\}^\infty_{n=1}]=[\{x_n(y_n+z_n)\}^\infty_{n=1}]=[\{x_ny_n\}^\infty_{n=1}]+[\{x_nz_n\}^\infty_{n=1}]\\&=[\{x_n\}^\infty_{n=1}]\cdot[\{y_n\}^\infty_{n=1}]+[\{x_n\}^\infty_{n=1}]\cdot[\{z_n\}^\infty_{n=1}]\end{align}}
- כפל ב-1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\{x_n\}^\infty_{n=1}]\cdot[\{-1\}^\infty_{n=1}]=[\{-x_n\}^\infty_{n=1}]=-[\{x_n\}^\infty_{n=1}]}
- מספר הופכי: נשתמש בכך שאם יש בסדרת קושי אינסוף אפסים, אז היא שקולה לסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=\{0\}^\infty_{n=1}} , ולכן לא צריך להיות לה הופכי. לכן נניח שקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} כך שלכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n>N} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_n\not=0} . נגדיר סדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'_n=\begin{cases}x_n&&n>N\\1&&n\leq N\end{cases}} . ברור שהסדרה החדשה שקולה לסדרה המקורית, וכן שאין בה אפסים. נקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\{x_n\}^\infty_{n=1}]\cdot\left[\left\{\frac{1}{x'_n}\right\}^\infty_{n=1}\right]=[\{x'_n\}^\infty_{n=1}]\cdot\left[\left\{\frac{1}{x'_n}\right\}^\infty_{n=1}\right]=\left[\left\{\frac{x'_n}{x'_n}\right\}^\infty_{n=1}\right]=[\{1\}^\infty_{n=1}]=1}
- אסוציאטיביות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}(a+bi)\cdot((c+di)\cdot(e+fi))&=(a+bi)\cdot((ce-df)+(cf+de)i)=(ace-adf-bcf-bde)+(acf+ade+bce-bdf)i\\&=((ac-bd)+(ad+bc)i)\cdot(e+fi)=((a+bi)\cdot(c+di))\cdot(e+fi)\end{align}}
- קומוטטיביות:
- איבר יחידה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a+bi)\cdot1=(a+bi)\cdot(1+0i)=(a\cdot1-0\cdot b)+(a\cdot0+b\cdot1)i=a+bi}
- חוק הצמצום: באותה דרך
- חוג הפילוג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}(a+bi)\cdot((c+di)+(e+fi))&=(a+bi)\cdot((c+e)+(d+f)i)=(ac+ae-bd-bf)+(ad+af+bc+be)i\\&=((ac-bd)+(ad+bc)i)+((ae-bf)+(af+be)i)=(a+bi)\cdot(c+di)+(a+bi)\cdot(e+fi)\end{align}}
- כפל ב-1: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a+bi)\cdot(-1+0i)=(-a-b\cdot0)+(-b+a\cdot0)i=(-a)+(-b)i=-(a+bi)}
- מספר הופכי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a+bi)\cdot\left(\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}i\right)=\left(\frac{a^2+b^2}{a^2+b^2}+\frac{-ab+ba}{a^2+b^2}i\right)=1+0i=1}
(הערה: בחלק מההוכחות השתמשנו לא רק בתכונות הכפל של המערכת הקודמת, אלא גם בתכונות של החיבור, עליהן ניתן לקרוא כאן)
לוח הכפל
- ערך מורחב – לוח הכפל
הגדרה נאיבית של פעולת הכפל נעשית באמצעות לוח הכפל, שהוא טבלה המציגה את תוצאותיה של פעולת הכפל, הקרויה מכפלה, על כל שני מספרים אפשריים שכל אחד מהם בן ספרה אחת.
לוח הכפל | ||||||||||
9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\, \times} |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 |
18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 0 | 2 |
27 | 24 | 21 | 18 | 15 | 12 | 9 | 6 | 3 | 0 | 3 |
36 | 32 | 28 | 24 | 20 | 16 | 12 | 8 | 4 | 0 | 4 |
45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | 5 |
54 | 48 | 42 | 36 | 30 | 24 | 18 | 12 | 6 | 0 | 6 |
63 | 56 | 49 | 42 | 35 | 28 | 21 | 14 | 7 | 0 | 7 |
72 | 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 | 0 | 8 |
81 | 72 | 63 | 54 | 45 | 36 | 27 | 18 | 9 | 0 | 9 |
הערה: לוח הכפל המוכר יותר (שחיבורו מיוחס לפיתגורס) עוסק במכפלות בתחום 1–10, ולא בתחום 0–9 כפי שמוצג כאן. אין טעם טכני בהצגת מכפלות של 10, משום שאלה הן כבר מכפלות של מספר בן שתי ספרות, שאותן ניתן לבצע לפי לוח הכפל המופיע כאן, והכללים לכפל של מספרים בני יותר מספרה אחת.
כופל ונכפל
כפל בין מספרים הוא פעולה קומוטטיבית, כלומר אין חשיבות לסדר המוכפלים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x\cdot y = y \cdot x} . עם זאת, משיקולים דידקטיים בתחילת הוראתה של פעולת הכפל מבדילים בין שני הגורמים: הראשון בסדר הכתיבה אשר אותו מכפילים - נקרא "נכפל", והשני - בו מכפילים - נקרא "כופל". שניהם יחדו נקראים "גורמים". עבור שאלות מילוליות - הנכפל נושא תמיד את השם הנתון בשאלה (כדורים / בובות וכו'). הכופל מראה פי כמה להגדיל את הנכפל, ולכן מייחסים לו את השם "פעמים". את הביטוי 3X5 יש לקרוא "שלוש כפול חמש" או "שלוש פעמים חמש". דוגמאות:
- אמרתי ארבע פעמים "כולם מקישים בלשון", כמה מילים אמרתי. תשובה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3 \times 4} . מספר המילים הוא הנכפל, ומספר הפעמים הוא הכופל.
- יש לי שלושה ילדים, ונתתי לכל אחד מהם דמי חנוכה בסך עשרה שקלים. כמה דמי חנוכה נתתי? תשובה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3 \times 10 = 30} . מספר הילדים הוא הנכפל, וגובה דמי חנוכה הוא הכופל.
- החלטתי לתת דמי חנוכה בסך עשרה שקלים לכל ילד. כמה דמי חנוכה אתן כאשר יש לי שלושה ילדים? הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 10 \times 3 = 30} . גובה דמי חנוכה הוא הנכפל, ומספר הילדים הוא הכופל.
משתי הדוגמאות האחרונות ניתן לראות שקביעת הכופל והנכפל תלויה בניסוח של השאלה, אך אינה משפיעה על התוצאה, שהרי פעולת הכפל היא קומוטטיבית.
ראו גם
- עקרון הכפל
- מכפלה וקטורית
- מכפלה סקלרית
- כפל מטריצות
- מכפלה טנזורית
- מכפלה קרטזית
- מבחן בדיקה של מכפלות בעזרת סכום ספרות סופי
- עצמות נפייר
קישורים חיצוניים
מיזמי קרן ויקימדיה |
---|
ערך מילוני בוויקימילון: כפל |
ספר לימוד בוויקיספר: כפל |
- Re: Visual Multiplication and 48/2(9+3) - וי הארט מסבירה על שיטות לפתירת תרגילי כפל: מאונך מול חזותי
כפל31518927