משתנה מקרי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת ההסתברות, משתנה מקרי (נקרא גם: משתנה אקראי או משתנה רנדומלי) הוא פונקציה המתאימה כל אירוע אפשרי במרחב הסתברות לערך מספרי. לדוגמה, התאמת צד מטבע לערך 0, וצדו השני לערך 1; גם גובהו של אדם שנבחר באקראי הוא משתנה מקרי.

באופן אינטואיבי, ניתן לומר שמשתנה מקרי הוא תוצאה לא דטרמיניסטית, כלומר שלא ניתן לדעת את ערכה מראש. למשל, אם תוטל קובייה, לא יהיה ניתן לנבא האם תוצאת ההטלה תהיה 1, 2, 3, 4, 5 או 6. לפעמים, ובניגוד לדוגמה לעיל, תוצאות ניסוי אינן שכיחות באותה מידה, ובכל זאת התוצאה נחשבת משתנה מקרי מפני שאין לניסוי תוצאה וודאית.

המשתנים המקריים פותחים את הדלת הראשית של תורת ההסתברות לכלים מן האנליזה המתמטית. הם הופכים מרחב הסתברות, שבו כל מאורע נקודתי הוא ישות עצמאית, למערכת מתמטית שבה אפשר לחשב תוחלות או מדדים מספריים אחרים. כל המשפטים החשובים בתורת ההסתברות עוסקים במשתנים מקריים.

מבחינה פורמלית, המשתנה המקרי הוא פונקציה מדידה ממרחב הסתברות למרחב מדיד כלשהו, בדרך כלל המספרים הממשיים עם הסיגמא-אלגברה של בורל. במקרה כזה המשתנה המקרי נקרא משתנה מקרי ממשי. הדרישה שהפונקציה מדידה מבטיחה שאפשר יהיה לחשב את ההסתברות למאורעות , כלומר . כאשר מרחב ההסתברות הוא בדיד, כל הפונקציות ממנו מדידות, ולכן כל פונקציה יכולה להיחשב משתנה מקרי.

תוצאה יחידה של משתנה מקרי נקראת מספר אקראי.

פונקציות התפלגות

אם נתון משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X : \Omega \to \mathbb{R}} המוגדר על מרחב ההסתברות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega ,P)} , אפשר לשאול שאלות כמו "מה הסיכוי שהערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} גדול מ-2?". זו ההסתברות של המאורע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \omega \in \Omega : X(\omega) > 2 \right\}} הנכתבת בקיצור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X > 2)} .

ההסתברויות של כל טווחי התוצאות של משתנה מקרי ממשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} נותנות את ההתפלגות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . ההתפלגות "מתעלמת" ממרחב ההסתברות המסוים שמשמש בהגדרה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ונותנת רק את ההסתברות של ערכים שונים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . התפלגות כזו ניתנת להצגה תמיד בעזרת פונקציית הצטברות ההסתברות שלה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_X(x) = P(X \le x)}

ולעיתים גם בעזרת פונקציית צפיפות הסתברות (השווה לנגזרת של פונקציית הצטברות ההסתברות בכל נקודה בה קיימת הנגזרת). במונחי תורת המידה, אנו משתמשים במשתנה המקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} כדי לדחוף ("push forward") את המידה על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , למידה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} על הממשיים. מרחב ההסתברות המקורי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , הוא מכשיר טכני להבטחת קיומם של משתנים מקריים, ולפעמים לבנייתם. בפועל, לעיתים קרובות נפטרים לגמרי מהמרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , ופשוט מגדירים מידה על הממשיים כך שמידת הישר הממשי כולו תהיה 1, כלומר עובדים עם התפלגויות במקום עם משתנים מקריים.

פונקציות של משתנים מקריים

אם נתון משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , ופונקציה מדידה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : \mathbb{R} \to \mathbb{R}} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y = f(X)} יהיה גם הוא משתנה מקרי על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , כיוון שהרכבה של פונקציות מדידות היא פונקציה מדידה. אותו תהליך שמאפשר לעבור ממרחב ההסתברות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega ,P)} ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (R ,dF_{x})} יכול לשמש לקבלת ההתפלגות של . פונקציית הצטברות ההסתברות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} היא

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_Y(y) = \mbox{P}(f(X) \le y )} .

דוגמה

יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} משתנה מקרי ונגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y = X^2} משתנה מקרי חדש. אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_Y (y) = \mbox{Prob}(Y \le y) = \mbox{Prob}(X^2 \le y)} . אם y < 0 אזי ברור ש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Prob}(Y \le y) = 0} .
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \ge 0} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_Y (y) = \mbox{Prob}(X^2 \le y) = \mbox{Prob}(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y})} .

תוחלת משתנה מקרי

תוחלת של משתנה מקרי היא הכללה של ממוצע חשבוני (או ממוצע חשבוני משוקלל), ומסומלת על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{E}X} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{E}(X)} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{E}[X]} או .

התוחלת של משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} שפונקציית הצטברות ההסתברות שלו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} היא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^\infty x \, dF(x)}

האינטגרל הוא אינטגרל סטילטיס (רימן-סטילטיס או לבג-סטילטיס הזהים במקרה זה מאחר שפונקציית הצטברות ההסתברות היא פונקציה מונוטונית עולה).

קיימים מקרים שבהם האינטגרל אינו מתכנס ואז לא קיימת התוחלת (אם כי, כאשר הגבול של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-t}^t x \, dF(x)} (כאשר t שואף לאינסוף) הוא אינסוף, אומרים שהתוחלת היא אינסוף).

אם קיימת פונקציית צפיפות ההסתברות f, ניתן להגדיר את התוחלת בהגדרה שקולה, בעזרת אינטגרל לבג, כדלהלן:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^\infty x \ f(x)\, dx}

מומנטים

ערך מורחב – מומנט (הסתברות)

ההתפלגות של משתנה מקרי מאופיינת לעיתים קרובות על ידי מספר קטן של פרמטרים, שיש להם גם משמעות מעשית. לדוגמה, לפעמים מספיק לדעת מה "הערך הממוצע" של משתנה מקרי. ערך זה מבוטא על ידי מושג התוחלת. לא לכל משתנה מקרי קיימת תוחלת (במקרים אלה, האינטגרל המגדיר את התוחלת אינו מתכנס ובחלק מהם התוחלת נקראת אינסופית).

התוחלת היא מקרה פרטי של סוג פונקציות, המוגדרות על משתנים מקריים ונקראות מומנטים.

המומנט מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} (או המומנט ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} ) של משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} סביב הנקודה (או המספר) הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} הוא התוחלת של המשתנה המקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|X-a\right|^n} . התוחלת של משתנה מקרי היא המומנט מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} שלו סביב ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} .

התוחלת היא פונקציה ליניארית, אולם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{E}f(X)} אינו שווה בהכרח ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\mbox{E}X)} כאשר f פונקציה כללית יותר.

אחרי שמוצאים את "הערך הממוצע", אפשר לשאול עד כמה ערכי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} רחוקים ממנו. תשובה מספרית מקובלת ניתנת על ידי סטיית התקן (שהיא השורש הריבועי של השונות) של המשתנה המקרי. קיימים ערכים רבים אחרים היכולים לתת תשובה לשאלה, למשל, כל אחד מן המומנטים מסדר זוגי של המשתנה המקרי סביב התוחלת וכן ממוצע הערכים המוחלטים של הסטיות מן הממוצע (התוחלת של המשתנה המקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |X-E[X]|} ).

התכנסות

תוצאות לגבי התכנסות סדרות מסוימות של משתנים מקריים מהוות חלק נכבד מתורת ההסתברות; ראו למשל את חוק המספרים הגדולים ומשפט הגבול המרכזי.

סדרת משתנים מקריים יכולה להתכנס למשתנה מקרי בכמה מובנים. ראו התכנסות של משתנים מקריים.

משתנה מקרי בדיד

ישנם שני סוגים של משתנים מקריים בדידים:

  1. משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X : \Omega \to \mathbb{R}} שקבוצת כל הערכים שהוא יכול לקבל, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=X\left(\Omega\right)} , סופית. במקרה כזה מתקיים
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{x\in A}P(X=x) =1} .
    פונקציית הצטברות ההסתברות מחושבת על ידי:
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\sum_{z\in A ,z \leq x}P(X=z)} .
    התוחלת מחושבת על ידי:
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[X]=\sum_{x\in A }P(X=x)x} .
    דוגמאות של משפחות משתנים מסוג זה הן: משתנה מקרי אחיד בדיד, בינומי והיפרגאומטרי.
  2. משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X : \Omega \to \mathbb{R}} שקבוצת כל הערכים שהוא יכול לקבל אינסופית בת מנייה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=X\left(\Omega\right) =\{x_1,x_2,...\}} .
    במקרה כזה הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^\infty P(X=x_i)} מתכנס וסכומו 1. פונקציית הצטברות ההסתברות מחושבת על ידי סכום הטור:
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\sum_{i=1}^\infty I_{\{x_i\leq x\}}P(X=x_i)}
    כאשר,
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{\{x_i\leq x\}}=\left\{\begin{matrix} 1&x_i\leq x\\0&x_i>x\end{matrix}\right.}
    התוחלת ניתנת לחישוב באמצעות הטור הבא (בתנאי שהטור אכן מתכנס. אם הטור לא מתכנס התוחלת לא קיימת.)
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[X]=\sum_{i=1}^\infty P(X=x_i)x_i}
    דוגמאות של משפחות משתנים מקריים מהסוג הנידון הן: משתנה מקרי גאומטרי, פואסוני ובינומי שלילי.

דוגמה למשתנה מקרי בדיד ללא תוחלת

נניח שקיימים יצורים מסוג מסוים שההסתברות שיחיו לפחות שנה אחת היא חצי. ההסתברות שיחיו לפחות שנתיים היא שליש, וכן הלאה, ההסתברות שיחיו לפחות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} שנים היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/(n+1)} . נבחר יצור כזה שרק נולד, ונגדיר כמשתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} את מספר השנים השלמות שהיצור יזכה לחיות. על פי הנתון, עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=0,1,2,...} ,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X\geq n)=\frac{1}{n+1}} .

פונקציית ההסתברות, עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=0,1,2,...} ,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=n)=P(X\geq n)-P(X\geq n+1)=\frac{1}{(n+1)(n+2)}} .

התוחלת,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[X]=\sum_{n=1}^\infty \frac{n}{(n+1)(n+2)}} .

זהו טור שמתבדר לאינסוף. קיבלנו יצור שמספר שנות חייו סופי בהסתברות 1 ותוחלת חייו היא אינסוף.

משתנה מקרי רציף

בהינתן משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X : \Omega \to \mathbb{R}} ופונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : \mathbb{R} \to \mathbb{R}} המקיימת

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P\left(X\in (a,b)\right)=\int_a^b f(x)dx}

לכל קטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)\subseteq \mathbb{R}} . משתנה זה יקרא משתנה מקרי רציף והפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} תקרא פונקציית צפיפות ההסתברות של המשתנה המקרי. במקרה כזה התוחלת של המשתנה המקרי ניתנת לחישוב באמצעות האינטגרל הלא אמיתי הבא (רק אם האינטגרל אכן קיים. אחרת התוחלת לא קיימת).

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[X]=\int_{-\infty}^\infty x \ f(x)\, dx}

דוגמאות של משפחות משתנים מקריים מהסוג הנידון הן: משתנה מקרי מעריכי, נורמלי, גמא ובטא.

דוגמה למשתנה מקרי רציף ללא תוחלת

נתון משתנה מקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X : \Omega \to \mathbb{R}} עם פונקציית הצטברות ההסתברות, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F : \mathbb{R} \to \mathbb{R}}

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\left\{\begin{matrix} 0&x\leq 0\\1-\frac{1}{1+x}&x>0\end{matrix}\right.} .

פונקציית צפיפות ההסתברות במקרה כזה היא,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\left\{\begin{matrix} 0&x\leq 0\\ \frac{1}{(1+x)^2}&x>0\end{matrix}\right.} .

התוחלת,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[X]=\int_{0}^\infty \frac{x}{(1+x)^2}\, dx = \infty} .

משתנה מקרי דו-ממדי

פונקציית הסתברות משותפת של משתנה מקרי דו־ממדי (X,Y) מוגדרת לפי:

.

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

משתנה מקרי40004267Q176623