משפט מוררה
![]() בערך זה |
משפט מוררה הוא משפט באנליזה מרוכבת הנותן תנאי שימושי וחשוב להוכחת הולומורפיות של פונקציה.
המשפט נקרא על שם ג'אצ'ינטו מוררה (אנ'), שהוכיח אותו בשנת 1886.
ניסוח פורמלי
תהי פונקציה רציפה על תחום פשוט וקשיר .
אם לכל משולש המוכל יחד עם פנימו ב- מתקיים , אזי הולומורפית ב-.
הוכחה
ראשית נוכיח שלפונקציה קיימת פונקציה קדומה ב-.
תהי נקודה בתחום. מכיוון ש- קבוצה פתוחה, קיים עיגול .
לכל נגדיר .
יהי משולש המוכל בעיגול (מתקיים בעבור קטן מספיק כיוון שהעיגול הוא קבוצה פתוחה), מהנתון נובע .
נוכל לרשום את השוויון כך:
ולאחר העברת אגפים נקבל
ולאחר הצבת ההגדרה נקבל את השוויון .
כעת, נוכיח שהפונקציה היא פונקציה קדומה של . כלומר מתקיים .
נשתמש בשוויון שהוכחנו קודם ונקבל:
מרציפות נקבל שכאשר שואף לאפס גם הביטוי שואף לאפס, כלומר מתקיים , ולכן פונקציה קדומה של .
ומכיוון ש- הולומורפית ב- נובע שגם נגזרתה הולומורפית ב-.
שימושים
משפט מוררה ביחד עם משפט פוביני או מבחן M של ויירשטראס יכול לסייע בהוכחת אנליטיות של פונקציות שמוגדרות על ידי סכום או אינטגרל.
דוגמה: נוכיח את האנליטיות של פונקציית גמא על ידי כך שנוכיח את השוויון לכל מסילה סגורה .
מהגדרת פונקציית גמא מתקיים .
ולאחר שימוש במשפט פוביני כדי להחליף את סדר האינטגרציה נקבל:
הפונקציה אנליטית, ולכן מתקיים (נובע ממשפט קושי-גורסה). כלומר לכל מסילה סגורה , ולכן פונקציית גמא אנליטית בכל המישור.
לקריאה נוספת
- פונקציות מרוכבות (כרך ג' יחידות 5–6), האוניברסיטה הפתוחה, 2009
קישורים חיצוניים
- משפט מוררה, באתר MathWorld (באנגלית)
- משפט מוררה, באתר אנציקלופדיה למתמטיקה (באנגלית)
אנליזה מרוכבת | ||
---|---|---|
בסיס | מספר מרוכב • שדה המספרים המרוכבים • המשפט היסודי של האלגברה • הספירה של רימן • נוסחת אוילר (אנליזה מרוכבת) | |
פונקציות | פונקציה מרוכבת • פונקציה שלמה • פונקציה אנליטית • פונקציה הולומורפית • פונקציה אוניוולנטית • נוסחת אוילר • העתקת מביוס • משפט ההעתקה של רימן | |
נגזרות | משוואות קושי-רימן • העתקה קונפורמית • טור לורן | |
אינטגרל | משפט ההערכה • משפט האינטגרל של קושי • נוסחת האינטגרל של קושי • משפט מוררה • משפט ליוביל | |
סינגולריות | סינגולריות • סינגולריות סליקה • קוטב • סינגולריות עיקרית • משפט קזוראטי-ויירשטראס • נקודת הסתעפות | |
משפט השאריות | משפט השאריות • עקרון הארגומנט • משפט רושה | |
עקרון המקסימום | עקרון המקסימום • למת שוורץ • משפט הערך הממוצע של גאוס | |
אנליזה מתמטית • חשבון אינפיניטסימלי • אנליזה וקטורית • טופולוגיה • אנליזה מרוכבת • אנליזה פונקציונלית • תורת המידה |
משפט מוררה38071305Q1140119