משוואת ברנולי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

משוואת ברנולי היא משוואה בהידרודינמיקה ובאווירודינמיקה המתארת את צורת הזרימה של נוזל או גז ניוטוני. המשוואה פותחה על ידי המתמטיקאי השווייצרי דניאל ברנולי.

בפשטות, העיקרון מאחורי הנוסחה, הידוע בשם עקרון ברנולי, קובע כי ככל שמהירות זרימתו של זורם (נוזל או גז) על גבי משטח גבוהה יותר, הזורם יפעיל פחות לחץ על המשטח. העיקרון נובע למעשה מחוק שימור האנרגיה, מאחר שסכום האנרגיה הקינטית (שהיא פונקציה של מהירות הזרימה) והאנרגיה הפוטנציאלית הוא קבוע.

משוואת ברנולי קובעת כי

כאשר:

משמעותה של המשוואה היא כי בכל נקודה בזורם סכום ערכי הפרמטרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P+\rho gh+{{1 \over 2}}\rho v^2} הוא קבוע. לצורך העניין, לו נבצע שתי מדידות בין הנקודות שהאינדקסים שלהן "1" ו-"2", אזי יתקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1+\rho gh_1+{{1 \over 2}}\rho v_1^2=P_2+\rho gh_2+{{1 \over 2}}\rho v_2^2}

תוקף

נוסחה זו נכונה במסגרת ההנחות הבאות:

  • הזורם איננו צמיג, כלומר: אין חיכוך פנימי ואין איבוד אנרגיה עקב חיכוך פנימי בין שכבות הזורם.
  • הזרימה היא זרימה לוחית יציבה.
  • הנוזל הוא אי-דחיס, כלומר: צפיפותו קבועה, אך לא בהכרח. כאשר הזורם המדובר הוא כן דחיס, ניתן להכליל את משוואת ברנולי באמצעות שימוש באנתלפיה תרמודינמית.
  • המשוואה תקפה לגבי קו הזרימה של הנוזל.

שימושים

בתעופה

עקרון ברנולי הוא למעשה העיקרון החשוב ביותר בהנדסה אווירונאוטית, מאחר שהוא העיקרון שמאפשר למטוס להתרומם מעל פני הקרקע: זרימת האוויר מעל כנף המטוס מהירה יותר מהזרימה מתחת לכנף, ובגלל הפרש המהירויות פועל על כנף המטוס יותר כוח בכיוון מעלה (שמפעיל האוויר מתחת לכנף) מאשר בכיוון מטה (שמפעיל האוויר מעל הכנף), ולכן המטוס מתרומם מהקרקע.

בשיט

עקרון ברנולי הוא הבסיס לתפעול המפרשים המשולשים. על ידי יצירת זרם אוויר מהיר בין שני מפרשים משולשים, ניתן לנצל את עקרון ברנולי ולהניע ספינות מפרש בכיוונים שונים. השימוש במפרשים משולשים שיפר בצורה משמעותית את יכולת הניווט של ספינות, ואיפשר להן לשוט קרוב יותר לכיוון הרוח. החוק התאורטי קובע גבול של עד 45 מעלות אל הרוח, אם כי בעזרת חוקים נוספים ניתן לחדד אל הרוח גם יותר מכך.

בתעשייה

אוחז ברנולי משמש לאחיזה של אובייקטים, ונמצא בשימוש במגוון תחומים בתעשייה.

הוכחת הנוסחה

משוואת ברנולי היא ביטוי לחוק שימור האנרגיה בנוזל אי-צמיג. ניתן להסיקה באמצעות חישוב האנרגיה והעבודה של הנוזל בכל נקודה בקו הזרימה (ראו הוכחה בהמשך). כמו כן, ניתן להסיק את הנוסחה באמצעות פורמליזם של מכניקה אנליטית על משוואות אוילר של זורם.

הוכחת הנוסחה אשר תובא להלן מתבססת על חוק שימור עבודה-אנרגיה הקובע כי עבודת הכוחות הלא משמרים שווה לשינוי בסכום האנרגיה הכוללת. בניסוח מתמטי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ W= \Delta E}

כלומר:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ W= \Delta E_k+ \Delta E_p}

במכניקה הניוטונית מוצג קשר זה בצורה הבאה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec F \cdot \Delta X= \Delta \left( {{1 \over 2}}mv^2 \right) +mg \Delta h}

כאשר, בהקשר של זורמים שנפחם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{V}} הנעים מתנאי לחץ P1 לתנאי לחץ P2, העבודה היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle W=(P_1-P_2) \mathcal{V}}

שרטוט המדגמים כמה מן הגדלים המופיעים בנוסחה

הסבר לטענה האחרונה: לפי השרטוט נתן לראות כי הכח הפועל בכל נקודה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \cdot A} כאשר A הוא שטח החתך ו-P הוא הלחץ באותה הנקודה. האלמנט עובר בזמן נתון העתק של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v \cdot \Delta t= \Delta S} . כמוזכר למעלה, המכפלה של הכח בהעתק נותנת לנו את העבודה. במקרה זה: . היות שמתקיים עבור כל אלמנט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \cdot \Delta S = \mathcal{V}} והיות והעבודה נעשית במעבר מתנאי לחץ P1 לתנאי לחץ P2 ובניגוד לווקטור הזרימה, שווה העבודה ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle W=-(P_2-P_1) \mathcal{V}=(P_1-P_2) \mathcal{V}} . כאשר לצינור אין צורה המתחלקת בבירור לצורות מנסריות (או בפרט: גליל), ניתן להגיע להצגה זו על ידי מיצוי: חלוקת הצינור לחלקים אינפיניטסימליים אשר צורת כל אחד מהם, בקירוב טוב מאוד, דמוית מנסרה.

ניתן לעשות שימוש בהגדרת הצפיפות כיחס בין מסת הגוף לנפחו – הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = {{m \over \mathcal{V}}}} – כדי להציג את השינויים האנרגטיים לפי הצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta E=\Delta E_k+ \Delta E_p ={{1 \over 2}}m(v_2^2-v_1^2)+mg(h_2-h_1)= {{1 \over 2}} \rho \mathcal{V}(v_2^2-v_1^2)+ \rho \mathcal{V}g \Delta h}
מכאן, מתקבלת הנוסחה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (P_1-P_2) \mathcal{V} = {{1 \over 2}} \rho \mathcal{V}(v_2^2-v_1^2)+ \rho \mathcal{V}g \Delta h}

אחרי צמצום ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{V}} נקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (P_1-P_2) = {{1 \over 2}} \rho (v_2^2-v_1^2)+ \rho g \Delta h}

ניתן להציג נוסחה זו בצורה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1+\rho gh_1+{{1 \over 2}}\rho v_1^2=P_2+\rho gh_2+{{1 \over 2}}\rho v_2^2}

או, באופן כללי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P+\rho gh+{{1 \over 2}}\rho v^2=\mbox{constant}}

משוואת ברנולי לזרימה פוטנציאלית בלתי יציבה

קיימת וריאציה על משוואת ברנולי שמשמשת במקרים של זרימה לא תמידית; כלומר בזרימה בה ווקטור המהירות בנקודה קבועה מסוימת במרחב משתנה בזמן. גרסה זאת של המשוואה משמשת בתאוריה המתמטית של גלי ים ובאקוסטיקה (ניתן לגזור את מהירות הקול על בסיס המשוואה).

בעבור זרימה אי-רוטציונית, מהירות הזורם ניתנת לתיאור כגרדיאנט של פוטנציאל מהירות φ. במקרה זה, ובעבור צפיפות קבועה ρ, ניתן לעשות אינטגרציה על משוואות התנע והאנרגיה של משוואות אוילר במכניקת הזורמים ולקבל את המשוואה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \varphi}{\partial t} + \tfrac12 v^2 + \frac{p}{\rho} + gz = f(t),}

שתקפה גם לזרימות לא יציבות. כאן רכיבי המשוואה מסמלים את הנגזרת החלקית של פוטנציאל המהירות לפי הזמן, את האנרגיה הקינטית הסגולית בנקודה (ליחידת מסה), ובאופן דומה שני האיברים האחרונים אנלוגיים ללחץ הזורם ולאנרגיה הפוטנציאלית שלו. הפונקציה (f(t תלויה רק בזמן ולא במקום. כתוצאה, משוואת ברנולי ברגע מסוים לא תקפה רק לאורך קו זרם מסוים, אלא בכל תחום הזורם. ניתן גם להציב כביכול את הפונקציה (f(t על אפס באמצעות שילובה בפונקציית הפוטנציאל באמצעות הטרנספורמציה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi=\varphi-\int_{t_0}^t f(\tau)\, \mathrm{d}\tau,}

מה שמניב את הצורה הבאה של המשוואה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle \frac{\partial \Phi}{\partial t} + \tfrac{1}{2} v^2 + \frac{p}{\rho} + gz=0.}

צורה זאת של המשוואה, שכללית יותר מהגרסה היציבה הנפוצה יותר, שימושית מאוד בניתוח בעיות רבות (המקרה הפרטי של זרימה יציבה מתקיים כאשר פוטנציאל המהירות לא משתנה בזמן).

גזירת המשוואה

מבחינה היסטורית, משוואת ברנולי לזרימה פוטנציאלית בלתי יציבה קדמה לניסוח של משוואות אוילר הכלליות יותר, על כן לא מפתיע שמנקודת מבט מודרנית היא נובעת בנקל ממנה. המשוואה נובעת מהמשוואה השנייה בשלוש משוואות אוילר לזורמים (שמייצגת שימור תנע). כדי להוכיח זאת נראה את השקילות בין המשוואות במקרה של זרימה דו-ממדית במישור אנכי. נכתוב את משוואת אוילר לשימור תנע בזורמים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} {\partial v\over \partial t} + v {\partial v\over \partial x}= -{1\over \rho}{\partial P\over \partial x}\\[1.2ex]\end{align} }

משוואה זאת חלה על זרימה חד-ממדית. כדי שתהיה ישימה לזרימה דו-ממדית בשדה כבידתי, יש ליישם אותה לקו זרם מסוים, תוך התחשבות בעובדה שהכוחות שפועלים על אלמנט זורם אינם נובעים רק מהפרשי לחצים אלא גם מרכיב כוח הכובד המשיק לקו הזרם. לשם כך נתייחס לקו זרם בפרמטריזציה טבעית; קואורדינטת ה-x של נקודה עליו תהיה אורך העקום s מנקודת ההתייחסות עד אליה. בנוסף, כדי לחשב את התאוצה של הזורם בנקודה מסוימת במרחב, נוסיף את האיבר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\cdot ds\cdot sin\alpha } לאיבר התאוצה. כעת, נבצע אינטגרל קווי לפי s על משוואת אוילר המתוקנת ונקבל את הקשר:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} {\partial \Phi \over \partial t} + g(z - z_0) + \frac {{1}}{{2}}v^2(s) + {P \over \rho} = 0\\[1.2ex]\end{align} }

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z - z_0 } הוא הגובה של נקודה ביחס לגובה הייחוס, והמעבר האחרון נובע מההגדרה של פוטנציאל הזרימה:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \Phi}{\partial s} = v_s}

יישום המשוואה להרחבת חוק טוריצ'לי

משוואת ברנולי המוכללת מאפשרת להסיק את מהירות הזרימה כשבריר זמן לאחר פתיחת הפיה של הבקבוק.

משוואת ברנולי לזרימה יציבה מאפשרת להסיק את חוק טוריצ'לי, הקובע שמהירות היציאה של המים שווה למהירות הנפילה של גוף הנופל נפילה חופשית מגובה ששווה לעומק הפיה של המיכל יחסית למפלס המים במיכל: . אולם בפועל, לוקח לתהליך הפריצה של המים זמן סופי להתייצב על מהירות הזרימה שחוזה חוק טוריצ'לי. בסעיף זה נבצע אנליזה כללית יותר, שמאפשרת לחשב גם את הזמן האופייני הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau } שחולף עד לקבלת זרימה יציבה. נניח שהפיה היא בעלת אורך L, עומק h מתחת לפני המים, שטח חתך קטן בהרבה משטח המיכל, ונניח שהיא סגורה על ידי מגופה, אשר פותחים אותה ברגע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 0}

משוואת ברנולי לזרימה פוטנציאלית בלתי יציבה מאפשרת לקחת בחשבון את האינרציה הסופית של הזורם בפיה. נתייחס לפוטנציאל הזרימה בנקודה על החתך של הפיה. הנגזרת הזמנית שלו שווה לתאוצת המים בפיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{{dv}}{{dt}} } כפול אורך הפיה L, שכן הזרימה בתוך המיכל עצמו זניחה. כיוון שהזרימה מתרחשת בגובה אחיד, משוואת ברנולי לזרימה פוטנציאלית בלתי יציבה מקבלת את הצורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho L \frac{{dv}}{{dt}} + \frac{{1}}{{2}}\rho v^2 = \rho gh } , אשר הפתרון שלה הוא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t) = \sqrt{{2gh}}\cdot tanh(\frac{{\sqrt{{2gh}}\cdot t}} {{L}}) } , שניתן לכתוב אותו גם כ-: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t) = \sqrt{{2gh}}\cdot tanh(\frac{{t}} {{\tau}}) } , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau = \frac{{L}} {{\sqrt{{2gh}}}} } הוא הזמן האופייני להתייצבות הזרימה. ראוי להבחין, שכאשר מנקבים את הדופן של בקבוק (כלומר כאשר אין לו "פיה"), L הוא עובי הדופן של הבקבוק.

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא משוואת ברנולי בוויקישיתוף
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

משוואת ברנולי34052252Q181328