מחומש
מחומש (ביוונית: פֶּנְטַאגוֹן) הוא מצולע בעל חמש צלעות. סכום זוויותיו הפנימיות של מחומש הוא 540 מעלות, ויש בו 5 אלכסונים.
מחומש משוכלל
מחומש משוכלל הוא מחומש שכל צלעותיו שוות זו לזו וכל הזוויות שוות זו לזו. גודל כל אחת מהזוויות הוא 108°. מספר זה אינו מחלק את 360, ולכן לא ניתן לרצף את המישור במחומשים משוכללים.
שטח מחומש משוכלל שאורך צלעו a מחושב על פי הנוסחה:
כל אלכסוני המחומש שווים באורכם זה לזה, וכל אחד מקביל לצלע איתה הוא לא חולק קודקוד משותף. אלכסון עם שתי צלעות יוצרים משולש זהב רחב (משולש שווה-שוקיים שהיחס בין הבסיס לשוק הוא יחס הזהב), ואילו שני אלכסונים עם צלע יוצרים משולש זהב צר (שהיחס בין שוק לבסיס הוא יחס הזהב). כל האלכסונים יוצרים פנטגרם.
בנייה בסרגל ומחוגה
ניתן לבנות מחומש משוכלל על ידי שימוש במחוגה ובסרגל בלבד, על ידי חסימתו במעגל. דרך זו תוארה על ידי אוקלידס בספרו יסודות (ספר רביעי, טענה 11) כשלוש מאות שנה לפני הספירה. הבניה מבוססת על כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5}-1}{4}} ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sin\left(\frac{2\pi}{5}\right) = \frac{\sqrt{10+2\sqrt{5}}}{4}} .
אחת הדרכים לכך היא:
- מסרטטים מעגל, מרכזו יהיה O (המעגל הירוק שבסרטוט משמאל). נניח שרדיוסו של מעגל זה - יחידה אחת.
- בוחרים על ההיקף נקודה, A, שתהווה אחד מקודקודי המחומש. מעבירים ישר מ-A דרך המרכז, O.
- בונים אנך לקוטר AO, מסמנים את אחד החיתוכים שלו עם המעגל כ-B.
- מסמנים את הנקודה C במרכז הקטע OB. (המרחק ).
- מעבירים מעגל שמרכזו הנקודה C דרך הנקודה A, מסמנים את נקודת החיתוך בין המעגל לקו OB כ-D. (המרחק , וזהו אורך צלע המחומש החסום במעגל המקורי).
- מעבירים מעגל שמרכזו A דרך הנקודה D; מסמנים את חיתוכיו עם המעגל המקורי (הירוק) באותיות E ו-F.
- מעבירים מעגלים שמרכזם E ו-F דרך הנקודה A, מסמנים את חיתוכיהם עם המעגל המקורי כ-G ו-H בהתאמה.
- הנקודות AEFGH מהוות את קודקודי המחומש המשוכלל.
דרך אחרת מתוארת באנימציה שמשמאל.
דרך נוספת באמצעות בניית מלבן זהב ושימוש באורכו ורוחבו, כדי לבנות משולש שווה שוקיים בעל זווית ראש 36 מעלות.
מיזמי קרן ויקימדיה |
---|
ערך מילוני בוויקימילון: מחמש |
ספר לימוד בוויקיספר: מחומש |
מצולעים ופאונים | ||
---|---|---|
מושגים | מצולע • פאון • קודקוד • צלע • מקצוע • פאה • זווית חיצונית • אלכסון | |
מצולעים | ||
לפי מספר צלעות | משולש • מרובע • מחומש • משושה • משובע • מתומן | |
משולשים | משולש ישר-זווית • משולש שווה-שוקיים • משולש שווה-צלעות | |
מרובעים | מקבילית • טרפז • טרפז שווה-שוקיים • מרובע ציקלי • דלתון • דלתון ריצוף • מעוין • מלבן • ריבוע | |
כוכבים | פנטגרם • מגן דוד • אניאגרם | |
תכונות | מצולע משוכלל • מצולע שווה-צלעות • מצולע קמור • כוכב | |
פאונים | ||
פאונים משוכללים | ארבעון • קובייה • תמניון • תריסרון • עשרימון | |
פאונים ארכימדיים | ארבעון קטום • קובוקטהדרון • קובייה קטומה • תמניון קטום • רומביקובוקטהדרון • קובוקטהדרון קטום • קובייה מסותתת • איקוסידודקהדרון • דודקהדרון קטום • איקוסהדרון קטום • רומביקוסידודקהדרון • איקוסידודקהדרון קטום • דודקהדרון מסותת | |
פאונים אחרים | פירמידה • מנסרה • אנטי-מנסרה • מקבילון • מעוינון • תיבה • איקוסיטטרהדרון | |
תכונות | פאון משוכלל • פאון משוכלל למחצה • פאון ארכימדי | |
הכללות | ||
הכללות | סימפלקס • היפרקובייה • טסרקט |