משוואת הגלים
משוואת הגלים היא משוואה דיפרנציאלית מסדר שני שמתארת באופן כללי את התנהגותם של גלים שונים.
משוואת הגלים היא הדוגמה הפשוטה ביותר למשוואה דיפרנציאלית היפרבולית.
הצורה הכללית של המשוואה היא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{\partial^2 }{\partial t^2} \psi(t,\vec{r}) = v^2 \ \nabla ^2 \psi(t,\vec{r}) }
זוהי משוואה דיפרנציאלית, שבה הסימונים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}} מייצג את המיקום במרחב.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t} מייצג זמן.
- הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi (t,\vec{r})} היא פונקציית הגל, המתארת מהי משרעת הגל בכל נקודה ובכל זמן.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v} מייצג מהירות התקדמות הגל.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla ^2} הוא האופרטור לפלסיאן.
משוואה זו אינה משוואת הגלים היחידה, אלא רק הנפוצה והפשוטה ביותר. משוואה זו מתארת גלים עם יחס נפיצה ליניארי, וללא איבודי אנרגיה. דוגמאות נפוצות לגלים כאלה הם גלים אלקטרומגנטיים בריק או תנודות של מיתר מתוח. לגלים אחרים, כגון גלי קול, גלי מים, או תנודות בסריג (כמו פונונים).
פיתוח
משוואת הגלים באה לתאר הפרעה שמתקדמת בזמן ובמרחב במהירות קבועה, ושומרת על צורתה. נניח כי הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (x,t)} מתארת מידת ההפרעה משיווי משקל בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} ברגע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} . אם נניח כי גודל מהירות הגל קבוע, ונגדיר אותה להיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , אזי לאחר זמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} , הפונקציה המתארת את הגל ערכה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} כשהיא מוזזת ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v*t} יחידות מהנקודה הקודמת.
אם נניח כי הגל שומר על צורתו (כלומר, מידת הסטייה משיווי משקל נשארת קבועה) נוכל לשים לב לקיום הקשר . קשר זה נובע ממשפטי הזזת הצירים.
נגזור את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (x,t)} על פי קואורדינטת המיקום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} :
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial \psi}{ \partial x}= \frac {\partial \psi}{ \partial (x\pm vt)} \frac { \partial (x\pm vt)}{ \partial x}=\frac{d \psi}{d (x\pm vt)}{}}
על ידי גזירה פעם נוספת של אותו הביטוי נקבל:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial^2 \psi}{ \partial x^2}= \frac{d^2 \psi}{d (x\pm vt)^2}}
כעת נגזור את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (x,t)} על פי הזמן:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial \psi}{ \partial t}= \frac {\partial \psi}{ \partial (x\pm vt)} \frac { \partial (x\pm vt)}{ \partial t}=\pm v \frac{d \psi}{d (x \pm vt)}}
ופעם נוספת לפי הזמן:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial^2 \psi}{ \partial t^2}= v^2 \frac{d^2 \psi}{d (x\pm vt)^2}}
ניתן לראות בבירור כי מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial^2 \psi}{ \partial x^2}= \frac{1}{v^2}\frac {\partial^2 \psi}{ \partial t^2}}
.
משוואת הגלים החד-ממדית
עבור גל חד ממדי המשוואה היא:
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} הוא המקום במרחב החד ממדי.
פתרון כללי של המשוואה נתגלה על ידי ז'אן לה רון ד'אלמבר והוא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi(x,t) = F(x-vt) + E(x+vt)}
כאשר F,E הן פונקציות כלשהן. F מייצג גל שנע עם כיוון ציר ה-x ואילו E מייצג גל שנע בכיוון ההפוך. על ידי חישוב פשוט ניתן לראות שפתרון זה תקף לכל זוג פונקציות F,E (גזירות פעמיים ברציפות), וגם הכיוון ההפוך נכון: כל פתרון של משוואת הגלים ניתן להצגה בצורה זו.
פתרון שהוא גל מחזורי ניתן להצגה באמצעות הפתרונות הבסיסיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_k(x,t) = a_k e^{i(\omega t - k x)} + b_k e^{i(\omega t + k x)}}
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k} הוא מספר גל כלשהו (ביחידות של אחד חלקי מרחק) והתדירות הזוויתית היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \omega = v k} .
פתרון בשיטת פורייה
הפתרון הבסיסי של משוואת הגלים התלת ממדית שנקרא "גל מישורי" הוא
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{\vec{k}} (t,\vec{r}) = A(\vec{k}) e^{i \left( \omega t - \vec {k} \cdot \vec{r} \right)} }
אופן הכתיבה הזה נקרא פאזור, ויש לו שתי דרגות חופש לכל תדר - בתוך המקדם A שהוא מספר מרוכב. אפשר לפתור בצורה דומה בעזרת טורים של סינוס וקוסינוס, שם לקוסינוס ולסינוס מקדם ממשי עצמאי כך שנשמרות שתי דרגות החופש, או בעזרת טורים של סינוסים עם פאזות, שם המקדם מהווה דרגת חופש אחת והשנייה היא הפאזה (דוגמה של פתרון כזה ראו בערך מתנד הרמוני).
כאשר:
- הגודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \omega = 2 \pi f} הוא התדירות הזוויתית של הגל.
- הווקטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{k}} הוא וקטור הגל, כיוונו הוא כיוון ההתקדמות של הגל וגודלו עומד ביחס הפוך לאורך הגל, .
- הקשר בין התדירות הזוויתית לווקטור הגל במקרה זה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega = v k \!\,} , במקרה הכללי (כמו בתווך דיאלקטרי, בו מהירות התקדמות הגל v יכולה להיות תלויה באורך הגל) הקשר הוא לא-ליניארי והפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \omega (k)} נקראת יחס נפיצה.
- הפתרון הכללי ביותר של משוואת הגלים הוא סופרפוזיציה של גלים מישוריים עם יחס הנפיצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega = v k \!\,}
, כאשר פונקציית המשרעת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A(\vec{k}) }
נקבעת על פי תנאי ההתחלה של הבעיה. אם אין תנאי שפה שמגבילים את הערכים שווקטור הגל k יכול לקבל, אזי הפתרון הכללי נתון על ידי התמרת פורייה של פונקציית המשרעת:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi(t,\vec{r}) = \frac{1}{(2 \pi)^3} \int_{ \vec{k} \in \mathbb{R}^3}{ \psi_{\vec{k}}(t,\vec{r}) \ d^3 k}}
עבור גלים לא אידיאליים יש להוסיף למשוואת הגלים תיקונים המייצגים חיכוך, כוחות מאלצים ועוד.
פתרון על ידי נוסחת ד'אלמבר
על ידי מעבר לצורה הקנונית של משוואת הגלים והצבת תנאי התחלה, ניתן לקבל פתרון אנליטי עבור בעיית הגלים החד ממדית (בקטע אינסופי) הנתונה בצורה הבאה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u_{tt}-c^2 u_{xx}=G(x,t)}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u(x,0)=f(x), u_t(x,0)=g(x)}
נוסחת ד'אלמבר למשוואה הומוגנית
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x,t)=\frac{f(x-ct)+f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds}
נוסחת ד'אלמבר למשוואה אי הומוגנית
ראו גם
קישורים חיצוניים
- משוואת הגלים, באתר MathWorld (באנגלית)
משוואת הגלים35126463Q193846