המרחב המשיק
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
| ||
יש להשלים ערך זה: בערך זה חסר תוכן מהותי. |
המרחב המשיק בגאומטריה דיפרנציאלית הוא מרחב וקטורי שנבנה על יריעה חלקה ומתפקד כ"קירוב ליניארי" של אותה יריעה באופן מקומי, במובן זה, שהוא מתאר את הכיוונים השונים שבהם ניתן להתקדם על היריעה. לכל נקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p \in M} על היריעה יש מרחב משיק משלה שמסומן ב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_p M} אבל הואיל וכל המרחבים המשיקים הם מרחבים וקטורים באותו ממד, הם איזומורפיים זה לזה.
הגדרה
הגדרה על ידי נגזרות כיווניות
במרחב האוקלידי למונח "הכיוונים השונים שבהם ניתן להתקדם מהנקודה" יש פירוש אינטואיטיבי כמרחב כל הנגזרות הכיווניות בנקודה. זהו מרחב וקטורי שאיזומורפי למרחב האוקלידי עצמו (על ידי האיזומורפיזם הטבעי שמעביר את הנגזרת הכיוונית לפי הווקטור v לווקטור v עצמו). את מרחב הנגזרות הכיוונות בנקודה p ניתן להציג כאוסף של פונקציונלים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_p\mathbb{R}^n = \{ v: C^\infty\rightarrow \mathbb{R} | \ \forall f,g \in C^\infty \ : \ v(fg)=v(f)g(p)+v(g)f(p), \ v \mbox{ is linear } \}}
משמעות התנאי היא ש-v הוא פונקציונל ליניארי על מרחב הפונקציות החלקות (), שמקיים בנוסף לליניאריות תנאי גזירה מסוים (שלעיתים מכונה "כלל לייבניץ") לגבי הפעולה שלו על מכפלה. אוסף זה מכונה המרחב המשיק בנקודה p ואיבריו מכונים וקטורים משיקים. ניתן לראות מההגדרה של האוסף שהוא מרחב ליניארי ומקיים, לפי כלל לייבניץ, שלכל וקטור משיק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v(1)=0} , כלומר כל הווקטורים המשיקים מתאפסים על פונקציות קבועות.
ההצגה הזו שנראית אולי מסורבלת במרחב האוקלידי מאפשרת ליצור הכללה ליריעות דיפרנציאליות כלליות בצורה טבעית ביותר- ביריעה M המרחב המשיק בנקודה p, הוא האוסף הבא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_p M = \{ v: C^\infty (M) \rightarrow \mathbb{R} | \ \forall f,g \in C^\infty (M) \ : \ v(fg)=v(f)g(p)+v(g)f(p), \ v \mbox{ is linear } \}}
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^\infty (M)} הוא אוסף הפונקציות החלקות על היריעה M. כמו במרחב האוקלידי זהו מרחב וקטורי בעל ממד ששווה לממד היריעה.
אם מערכת קואורדינטות מקומיות בנקודה p אז הווקטורים המשיקים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial x_i}|_p} הם בסיס למרחב המשיק בנקודה (כאשר הם מוגדרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial x_i}|_p (f)=\frac{\partial (f\circ\varphi^{-1})}{\partial t_i}|_{\varphi(p)}} ו- ti הוא הציר ה-i-י במערכת הצירים ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n} ).
ביריעות שגזירות רק k פעמים (כלומר שלכל שתי מפות הפונקציה גזירה k פעמים אבל לא בהכרח חלקה) ההגדרה הנ"ל יכולה ליצור מרחב מממד אינסופי ולכן מגדירים את המרחב המשיק ביריעות האלו כמרחב שנפרש על ידי הווקטורים המשיקים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial x_1}|_p, \dots , \frac{\partial}{\partial x_n}|_p } שמוגדרים באותה צורה.
הגדרה על ידי מסילות חלקות
ניתן להגדיר את המרחב המשיק מכיוון יותר גאומטרי: אם נלך לאורך קו מסוים על היריעה (שניתן על ידי עקומה חלקה) וניקח פונקציה חלקה כלשהי, אז לאורך אותו עקום הפונקציה החלקה הזו תיוצג כפונקציה ממשית במשתנה אחד. את הפונקציה הזו אפשר לגזור בצורה הרגילה וכך לראות איך היא משתנה לאורך אותו קו (גדלה, קטנה וכו').
באופן פורמלי: תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\ \gamma}
עקומה חלקה. נגדיר את הווקטור המשיק ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\ \gamma}
בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \!\ t_0 }
(על ידי הפעולה שלו על פונקציה חלקה):
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma '(t_0) (f)= \frac{d(f(\gamma (t))}{dt} \Bigg|_{t=t_0}}
.
זהו וקטור משיק (לפי ההגדרה הקודמת- כלומר פונקציונל ליניארי שמקיים את כלל לייבניץ). יתר על כן- כל וקטור משיק ניתן להצגה כמשיק של עקום חלק כלומר זו הגדרה שקולה להגדרה הקודמת של המרחב המשיק.
מבנים נוספים
האגד המשיק
האגד המשיק הוא איחוד כל המרחבים המשיקים על פני כל היריעה, מסומן ב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T M}
. איחוד זה הוא איחוד זר כיוון שכל וקטור משיק שייך למרחב משיק של נקודה אחת בלבד, מעצם ההגדרה שלו (בעצם כל וקטור הוא מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (p,v)}
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p \in M,}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v\in T_p M}
).
על האגד המשיק קיים מבנה טבעי של יריעה שנוצר על ידי המפות:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ (U_p \times T_p M,x_1, \dots ,x_n,dx_1, \dots ,dx_n)\}_{p \in M} }
כאשר n הקוארדינטות הראשונות פועלות על p ו-n האחרונות על v, ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (U_p ,x_1, \dots ,x_n)}
היא מפה שמכילה את p. האגד המשיק הוא יריעה חלקה בממד כפול מממד היריעה.
פונקציות מהיריעה לאגד המשיק נקראות שדות וקטורים. כאשר הפונקציות האלו חלקות אומרים שזהו שדה וקטורי חלק (או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C^\infty}
) בדרך כלל מתעסקים בשדות וקטוריים חלקים בלבד וכאשר אומרים "שדה וקטורי" הכוונה היא לשדה וקטורי חלק אלא אם אומרים במפורש אחרת. לשדות הווקטוריים יש חשיבות בהכללת אלמנטים מהמרחב המשיק שבכל נקודה לאגד המשיק כולו בצורה חלקה, כמו במטריקת רימן ובמערכת משוואות דיפרנציאליות על יריעות.
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( U , x_1, \dots , x_n \right)}
מערכת קואורדיטות מקומיות, אז ב-U ניתן להציג את השדה הווקטורי V על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V(p) = \sum_{k=1}^n a_k (p) \frac{\partial}{\partial x_k}|_p} כאשר הפונקציות חלקות אם ורק אם V הוא שדה וקטורי חלק.
מההצגה הזו ניתן לראות את השדות הווקטוריים כאופרטורים על הפונקציות החלקות שמהווים הרחבה של הווקטורים המשיקים הנקודתיים ליריעה כולה. (כאשר אם g היא הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ g(p)=V(p)(f)} אז נגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V(f)=g} ומההצגה של השדה הווקטורי כסכום- g חלקה.)
האגד המשיק הוא מקרה פרטי של אגד וקטורי מעל היריעה.
המרחב הקו-משיק
המרחב המשיק הוא מרחב וקטורי מממד סופי, ולכן המרחב הדואלי שלו הוא גם כן מרחב וקטורי מאותו ממד. מרחב זה נקרא המרחב הקו-משיק ומסומן Tp*M. באמצעות מרחב זה מגדירים את מושג האינטגרל על היריעה.
עבור כל פונקציה חלקה f הדיפרנציאל של f, שמסומן df, הוא וקטור במרחב הקו-משיק שמוגדר על ידי הפעולה שלו על הווקטורים המשיקים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ df(v)=v(f) } לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v \in T_p M}
הבסיס הדואלי לבסיס הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ dx_i} ולפי הנוסחאות של מרחבים דואליים מממד סופי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ df= \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n}dx_n}
קל לראות שכל וקטור קו-משיק ניתן להצגה כדיפרניציאל של פונקציה חלקה, ומכאן נובעת הגדרה שקולה למרחב הקו-משיק, על ידי פיתוח טיילור:
נגדיר אידיאל בחוג הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C^\infty _p}
(חוג הפונקציות החלקות בסביבת הנקודה p) על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I=\left\{ f \in C^\infty _p | f(p)=0 \right\}}
זהו האידיאל של כל הפונקציות החלקות שמתאפסות ב-p. מתוכו ניקח אידיאל קטן יותר - - שהוא האידיאל שנוצר על ידי כל הפונקציות שמתאפסות פעמיים כלומר כל הפונקציות שהן מכפלה של שתי פונקציות מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I}
. פונקציות אלו מאפסות כל וקטור משיק.
ביריעה חלקה ניתן להציג כל פונקציה חלקה על ידי טור טיילור המתאים לה, לדוגמה עבור יריעה מממד 2:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x,y)=f(0,0)+x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}+r(x,y)}
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r(x,y) \in I^2}
.
למעשה, בנוסחה למעלה הקואורדינטות x ו-y הן קואורדינטות מקומיות ולכן ההצבה שלהם בתוך הפונקציה f היא סימון מקוצר; f מקבלת ערכים מתוך היריעה עצמה ולא מהמישור האוקלידי, והכוונה היא לנקודה על היריעה שהקואורדינטות המקומיות שלה הן x,y.
חוג המנה איזומורפי באופן טבעי למרחב הקו-משיק, על ידי ההגדרה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (f+I^2) (v)= v(f) }
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi}
היא פונקציית האיזומורפיזם בין הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I/I^2}
למרחב הקו-משיק. בדרך זו גם ניתן להראות שממד המרחב המשיק הוא כממד היריעה.
דיפרנציאל של העתקה בין יריעות
כל העתקה חלקה (דיפרנציאבלית) φ : M → N בין יריעות חלקות (דיפרנציאביליות) משרה מפה ליניארית בין המרחבים המשיקים
- .
אם המרחב המשיק מוגדר על ידי עקומות, מפה זו מוגדרת
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm d\varphi_x(\gamma'(0)) = (\varphi\circ\gamma)'(0) = \frac{d}{dt}(\varphi\circ\gamma)|_{t=0}} .
אם המרחב המשיק מוגדר על ידי דריבציות, אז
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm d\varphi_x(X) = [\![ f \mapsto X(f\circ \varphi) ]\!]} .
ההעתקה הליניארית dφx נקראת לעיתים קרובות "דיפרנציאל" אך גם "נגזרת" או "total derivative" או ה"pushforward" של φ בנקודה x, ומסומנת במספר סימונים שונים, בהם
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle D\varphi_x,\quad (\varphi_*)_x,\quad \varphi'(x)} .
במובן מסוים, הדיפרנציאל הוא הקירוב הליניארי הטוב ביותר ל-φ ליד x. כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = \mathbb{R}} , המפה dφx : TxM→R היא הדיפרנציאל הרגיל של φ במובן של חשבון אינפיניטסימלי. בקואורדינטות מקומיות הנגזרת של ƒ נתונה על ידי מטריצת יעקבי.
תוצאה חשובה לגבי הדיפרנציאל היא המשפט הבא:
- משפט. אם φ : M → N היא דיפאומורפיזם מקומי בנקודה x ב-M, אזי dφx : TxM → Tφ(x)N היא איזומורפיזם ליניארי. בכיוון ההפוך, אם dφx היא איזומורפיזם אזי קיימת סביבה פתוחה U של x כך ש-φ מעתיקה את U בצורה דיפאומורפית על תמונתה.
משפט זה הוא הכללה של משפט הפונקציה ההפוכה לפונקציות שהן העתקות בין יריעות.
ראו גם
קישורים חיצוניים
- המרחב המשיק, באתר MathWorld (באנגלית)
37223298המרחב המשיק