פונקציה מעריכית
פונקציה מעריכית היא פונקציה מתמטית מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^x} . המספר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} נקרא בסיס הפונקציה. כאשר מגדירים את הפונקציה כפונקציה ממשית, מגבילים לרוב את בסיס החזקה ודורשים .
דוגמאות:
- אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=2^x} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(4)=16,f(10)=1,024}
- אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=10^x} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(2)=100,f(6)=1,000,000}
המספר e הוא בסיס מיוחד לפונקציה המעריכית. ייחוד זה בא לידי ביטוי, למשל, בכך שנגזרת של פונקציה מעריכית ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} הוא בסיסה, זהה לפונקציה עצמה. פונקציה מעריכית שבסיסה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} נקראת אקספוננט.
הפונקציה ההופכית לפונקציה המעריכית היא פונקציית הלוגריתם.
כפונקציה ממשית, פונקציה מעריכית היא פונקציה עולה אם בסיסה גדול מ־1. אם הוא 1 היא הפונקציה הקבועה 1, ואם הוא קטן מ־1 וגדול מ־0 היא יורדת. בפונקציות מעריכיות ממשיות, מגבילים את בסיס הפונקציה המעריכית למספרים חיוביים בלבד, מכיוון שבבסיס שלילי, הפונקציה לא תהיה מוגדרת עבור מספרים מסוימים (0.5 וכדומה).
פונקציה מעריכית ממשית גדלה מהר יותר מכל פולינום (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^c=o(a^n)} , לכל ולכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a>1} ), אבל לאט יותר מכל חזקה חיובית של פונקציית העצרת (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^n= o(n!^\varepsilon)} ).
הגדרת הפונקציה המעריכית
בחשבון אינפיניטסימלי, הדרך הקלה והמהירה ביותר להגדיר את הפונקציה המעריכית, היא באמצעות האקספוננט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} והלוגריתם הטבעי, כאשר את הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} ואת הקבוע e מגדירים באמצעות טור חזקות:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x=\sum_{n=0}^\infty\frac{x^n}{n!}}
מבחני ההתכנסות הסטנדרטיים מראים שהטור מתכנס לכל ערך ממשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , ולכן ניתן להגדיר באופן טבעי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=e^1} .
את הפונקציה הכללית מגדירים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^x=e^{\ln(a)\cdot x}}
ניתן להגדיר באופן כללי את הפונקציה המעריכית באמצעות פיתוח חוקי החזקות של חתכי דדקינד מתוך פעולת החזקה של המספרים הרציונליים, בלי תלות בפונקציית האקספוננט.
תכונות הפונקציה המעריכית
כל תכונות הפונקציה המעריכית נובעות מתכונות האקספוננט. כך, הפונקציה המעריכית היא פונקציה רציפה וגזירה. הפונקציה המעריכית הפיכה כאשר בסיסה שונה מאחד, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\ne1} (כלומר כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(a)\ne0} ). הפונקציות המעריכיות מעבירות חיבור לכפל, וכפל לחזקה כלומר מתקיימות התכונות:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^x\cdot a^y=a^{x+y}}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a^x)^y=a^{x\cdot y}}
למעשה, קל לראות שאם פונקציה כלשהי מעבירה כפל לחזקה (מקיימת את התכונה השנייה), אז היא בהכרח פונקציה מעריכית. לעומת זאת פונקציה שמעבירה חיבור לכפל (מקיימת את התכונה הראשונה) איננה בהכרח פונקציה מעריכית, אם היא לא רציפה.
דוגמאות
- קצב הילודה – אם לכל אדם נולדים שני ילדים (4 ילדים לזוג), אז קצב הילודה הוא אקספוננטי בבסיס 2.
- פריקת וטעינת קבל דרך נגד מבוטאת על ידי הקשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I={I_0}e^{\frac{-t}{RC}}} .
- דעיכה רדיואקטיבית – בחומר רדיואקטיבי, כמות האיזוטופ הרדיואקטיבי מבצעת דעיכה מעריכית
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_t=N_0\left(\frac12\right)^{t/t_{1/2}}}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_t=N_0e^{-\lambda t}}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_0} הכמות המקורית
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_t} הכמות שנשארת אחרי זמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_{1/2}}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} חצי אורך החיים של החומר
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} אורח החיים הממוצע של החומר
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} קבוע הדעיכה
שלושת הפרמטרים קשורים על-ידי המשוואות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_{1/2}=\frac{\ln(2)}{\lambda}=\tau\ln(2)}
כאשר (ln(2 הוא הלוגריתם של 2 (בערך 0.693)
- בהסתברות: התפלגות מעריכית.
- בפיזיקה: התפלגות בולצמן.
- בתחומי ההונאה היצירתית: תרמית פירמידה.