שונות
בתורת ההסתברות וסטטיסטיקה, שׁוֹנוּת (סימון: מהמילה האנגלית Variance) היא מדד לפיזור ערכים באוכלוסייה נתונה ביחס לתוחלת שלה. מושג זה הוצג לראשונה על ידי רונלד פישר בשנת 1918.
באופן אינטואיטיבי, השונות היא המרחק (הריבועי) הממוצע של כל ערך, מהממוצע של כל הערכים. כלומר, אם השונות שווה אפס, כל הערכים זהים. ככל שהערך השונות עולה, כך הערכים "מפוזרים" יותר. מכיוון שהשונות מודדת מרחק, ערכה תמיד יהיה אי-שלילי.
השונות מוגדרת עבור משתנה רציף ועבור משתנה בדיד, וניתן לחשב אותה באופן תאורטי מפונקציית ההסתברות או לחשב אותה ביחס לאוכלוסייה או למדגם נתונים. יש התפלגויות (כגון התפלגות קושי) שהתוחלת שלהן אינה מוגדרת; וכאלה שהתוחלת שלהן מוגדרת, אבל השונות אינה מוגדרת.
היות שיחידות השונות הן ריבוע יחידות האוכלוסייה, דבר המקשה על השוואת גדלים, נעשה שימוש גם במושג סטיית תקן, השווה לשורש השונות, ומציג את הפיזור הממוצע ביחידות המקוריות.
הגדרה
עבור המשתנה המקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} – בדיד או רציף – אם נסמן (כרגיל) את התוחלת שלו ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} , אז השונות שלו מוגדרת כתוחלת של ריבוע המרחק מן המשתנה לתוחלת שלו:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X)\; \overset{\underset{\mathrm{def}}{}}{=}\; \mathbb{E} [ ( X - \mathbb{E}[X] ) ^ 2]=\mathbb{E} [( X - \mu ) ^ 2] }
מפיתוח אלגברי קצר מתקבל:
כל זאת בתנאי שהאינטגרלים או הסכומים המעורבים בחישוב מתכנסים.
חישוב שונות
משתנה מקרי בדיד
בהינתן פונקציית הסתברות בדידה x1 ↦ p1, ..., xn ↦ pn, ערך השונות נתון בנוסחה
משתנה מקרי רציף
בהינתן פונקציית הסתברות רציפה, חישוב השונות נתון על ידי
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} הוא ערך התוחלת
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu = \int x f(x) \, dx}
והאינטגרל מחושב על פני כל מקור פונקציית ההסתברות – במקרה של תומך חסום, על פני כל ערכי התומך.
דוגמאות
התפלגות נורמלית
ההתפלגות נורמלית עם הפרמטרים μ ו-σ היא התפלגות רציפה עבורה פונקציית צפיפות ההסתברות נתונה על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} }, }
כאשר μ הוא התוחלת, ערך השונות נתון על ידי:
חישוב אינטגרל זה על הפונקציה המכונה גאוסיין ניתן לביצוע באמצעות אינטגרלים כפולים ומעבר לקואורדינטות קוטביות. להתפלגות הנורמלית תפקיד מכריע בעולם ההסתברות עקב משפט הגבול המרכזי.
התפלגות מעריכית
התפלגות מעריכית עם הפרמטר λ ו-σ היא התפלגות רציפה עבורה תומך חצי אינסופי (הישר האי שלילי) פונקציית צפיפות ההסתברות נתונה על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \lambda e^{-\lambda x},\,}
ערך התוחלת שלה נתון על ידי μ = λ−1. ערך השונות נתון על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X) = \int_0^\infty (x - \lambda^{-1})^2 \, \lambda e^{-\lambda x} dx = \lambda^{-2}.\,}
לכן עבור משתנה מקרי המתפלג באופן מעריכי σ2 = μ2.
התפלגות פואסון
התפלגות פואסון עם הפרמטר λ היא התפלגות בדידה עבור אינדקס k מספר טבעי א-שלילי, פונקציית הסתברות עבור k נתונה על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(k) = \frac{\lambda^k}{k!} e^{-\lambda}}
ערך התוחלת הוא μ = λ. ערך השונות נתון על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X) = \sum_{k=0}^\infty \frac{\lambda^k}{k!} e^{-\lambda} (k-\lambda)^2 = \lambda}
לכן עבור משתנה מקרי המתפלג פואסון σ2 = μ.
ההתפלגות הבינומית
ההתפלגות הבינומית עם הפרמטרים n ו-p היא התפלגות בדידה, המוגדרת לפי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(k) = {n\choose k}p^k(1-p)^{n-k}} . ערך התוחלת הוא μ = np. ערך השונות הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X) = np(1-p)} .
הטלת מטבע
התפלגות בינומית עם מקדם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=0.5} מתארת את ההסתברות לקבלת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} עץ מתוך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} הטלות. לכן ערך התוחלת של כמות העצים שהתקבלו נתונה על ידי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n}{2}} , וערך השונות על ידי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n}{4}} .
התפלגות אחידה
קובייה הוגנת
ניתן למדל הטלת קובייה הוגנת בעלת 6 צדדים על ידי משתנה מקרי בדיד המקבל ערכים בין 1 ל-6, בהסתברות שווה והיא . ערך התוחלת הוא: (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. ולכן נחשב את השונות להיות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sum_{i=1}^6 \tfrac{1}{6}(i - 3.5)^2 = \tfrac{1}{6}\sum_{i=1}^6 (i - 3.5)^2 & = \tfrac{1}{6}\left((-2.5)^2{+}(-1.5)^2{+}(-0.5)^2{+}0.5^2{+}1.5^2{+}2.5^2\right) \\ & = \tfrac{1}{6} \cdot 17.50 = \tfrac{35}{12} \approx 2.92 \end{align} }
המקרה הכללי
משתנה מקרי X בעל התפלגות אחידה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle\frac{1}{n}} אשר מקבל את הערכים הטבעיים בין 1 ל-n. נחשב את השונות על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \operatorname{Var}(X) &=\mathbb E(X^2)-(\mathbb E(X))^2 \\ &=\frac{1}{n}\sum_{i=1}^n i^2-\left(\frac{1}{n}\sum_{i=1}^n i\right)^2 \\ &=\tfrac 16 (n+1)(2n+1) - \tfrac 14 (n+1)^2\\ &=\frac{ n^2-1 }{12} \end{align} }
תכונות
- השונות תמיד אי שלילית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X) \ge 0}
- השונות של משתנה מקרי שווה לאפס אם ורק אם המשתנה המקרי מקבל ערך קבוע בהסתברות 1
- השונות של טרנספורמציה ליניארית על המשתנה המקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} היא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(aX+b)=a^2\operatorname{Var}(X)} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,\,b} הם קבועים ממשיים.
- השונות (Variance) שווה לשונות המשותפת (Covariance) של המשתנה עם עצמו: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X) = \operatorname{Cov}(X, X)} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Cov}(Y, Z))} מסמן את השונות המשותפת של המשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y,Z} .
- השונות של סכום משתנים מקריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X,Y}
היא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X+Y)=\operatorname{Var}(X)+2\operatorname{cov}(X,Y)+\operatorname{Var}(Y)}
.
- ניתן להרחיב את התכונה לחישוב שונות סכום משתנים מקריים כך:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(X_i, X_j) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2\sum_{1\le i}\sum_{<j\le n}\operatorname{Cov}(X_i,X_j)}
- בנוסף, השונות המשותפת של כל זוג משתנים מתאפסת אם הם בלתי תלויים – כך שאם כל המשתנים המקריים בלתי תלויים זה בזה, אז השונות של סכום המשתנים המקריים תהיה שווה לסכום השונויות של כל אחד מהם.
- משפט השונות השלמה: אם משתנים מקריים, והשונות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y}
סופית, אפשר לפרק את השונות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X}
באופן הבא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(X)=\mathbb{E}(\operatorname{Var}(X|Y))+\operatorname{Var}(\mathbb{E}(X|Y))} .
שונות האוכלוסייה ושונות המדגם
שונות האוכלוסייה
עבור אוכלוסייה סופית (שהתפלגותה אינה ידועה) ניתן לחשב את השונות בעזרת הנוסחה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2 = \frac {\sum_{i=1}^N \left(x_i - \overline{x} \right)^2} {N}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{x}}
- ממוצע האוכלוסייה.
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N}
- מספר האיברים באוכלוסייה.
נוסחה שימושית לחישוב שונות האוכלוסייה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2 = \frac {\sum_{i=1}^{N} x_i^2}{N} - \left(\frac {\sum_{i=1}^{N} x_i}{N}\right)^2 = \frac {\sum_{i=1}^{N} x_i^2 - N*\overline{x}^2}{N}\!}
שונות המדגם
בהינתן מדגם מקרי פשוט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (y_1,\dots,y_N)} אם נסתכל על המדגם עצמו כעל אוכלוסייה בפני עצמה, אז שונות המדגם נתונה על ידי הנוסחה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle s^2 = \frac{1}{N} \sum_{i=1}^N \left(y_i - \overline{y_N} \right)^ 2} .
שונות המדגם היא אומד מומנטים עבור שונות האוכלוסייה. בהתפלגות הנורמלית שונות המדגם היא גם אומד נראות מרבית עבור שונות האוכלוסייה.
אומד חסר הטיה לשונות האוכלוסייה
כאשר נתון מדגם מקרי פשוט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (y_1,\dots,y_N)} ניתן לאמוד את שונות האוכלוסייה על ידי הנוסחה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle s^2 = \frac{1}{N-1} \sum_{i=1}^N \left(y_i - \overline{y} \right)^ 2} ; בתנאים רגילים, זהו אומד בלתי מוטה. אם הנתונים מעוגלים בזמן המדידה, יש להפעיל את תיקון שפרד. עקב היותו אומד חסר הטיה, אומד זה הוא המקובל בשימוש בתחום הסטטיסטיקה.
הוכחה לכך שהאומד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ s^2} חסר הטיה | |
---|---|
|
נוסחה שימושית אחרת לחישוב האומד לשונות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle s^2 = \frac {\sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2/N}{N-1} \!} .
ראו גם
קישורים חיצוניים
- שונות, באתר MathWorld (באנגלית)
- שונות, באתר אנציקלופדיה בריטניקה (באנגלית)
חישוב תוחלת ושונות במחשבון, סרטון באתר יוטיוב
שונות35746535Q175199