שדה גלובלי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, המונח שדה גלובלי מתייחס לשדה שבו מתקיימת נוסחת המכפלה (ראו להלן). אמיל ארטין ו- C. Nesbitt הוכיחו ששדות כאלה שייכים לאחת משתי משפחות:

יש מספר קווי דמיון בין שני סוגי השדות. לשדות משני הסוגים יש את התכונה שכל ההשלמות שלהם הם שדות טופולוגים קומפקטים מקומית (ראו שדה מקומי). כמו כן, שדה מכל אחד מהסוגים ניתן למימוש כשדה השברים של חוג דדקינד שבו כל אידיאל שאיננו אידיאל האפס הוא מאינדקס סופי.

נוסחת המכפלה

הנוסחה המגדירה את השדות הגלובליים קושרת את כל הערכים המוחלטים של השדה, וליתר דיוק את הערכים המוחלטים עד כדי שקילות. שדה הוא גלובלי אם אפשר לבחור נציג אחד של כל מחלקת שקילות של ערכים מוחלטים, כך שלכל x שונה מאפס בשדה מתקיים . לדוגמה, בשדה המספרים הרציונליים יש לעבור על כל הערכים המוחלטים ה-p-אדיים , ועל הערך המוחלט הארכימדי, שהוא הערך המוחלט הסטנדרטי. הערך המוחלט ה-p-אדי של מספר רציונלי x הוא 1 לכמעט לכל p, ומכפלת כל הערכים המוחלטים ה-p-אדיים האחרים שווה להפכי של |x|. תבנית:עץ מיון של שדות תבנית:תרשים מערכות מספרים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

שדה גלובלי40607416Q1531713