פורטל:מתמטיקה/משפטים והשערות/6
משפט ארבעת הצבעים הוא תוצאה בולטת בהיסטוריה של הטופולוגיה הקומבינטורית ושל תורת הגרפים. לפי המשפט, אפשר לצבוע כל מפה מדינית, באופן שכל שתי מדינות בעלות קו גבול משותף נצבעות בצבע שונה, תוך שימוש בארבעה צבעים בלבד. מתמטיקאים החלו לחקור את הבעיה באמצע המאה התשע-עשרה. היא נודעה כ'השערת ארבעת הצבעים', וזכתה ל'הוכחות' שגויות רבות.
בניסוח מודרני, המשפט מבטיח שלכל גרף מישורי קיימת צביעת קודקודים בארבעה צבעים. אנשי תורת הגרפים מכירים הוכחות קלות יחסית לכך שקיימת צביעה בחמישה צבעים, אבל ההוכחה לכך שאפשר להסתפק בארבעה נמצאה רק ב- 1976, והיא כרוכה בחיפוש ממוחשב על-פני אלפי מקרים. זו הייתה ההשערה המפורסמת הראשונה שהוכחה בעזרת מחשב, ובתחילה לא הייתה הסכמה כללית על תקפות ההוכחה, בעיקר בנימוק שלא הוכחה נכונותן של תוכניות המחשב עצמן. מאז נעשו ניסיונות רבים למצוא הוכחה סטנדרטית יותר, שיכולה לעמוד לביקורת עמיתים. הוכחה כזו עדיין לא נמצאה.
האיור משמאל מציג מפה סכמטית של ארבע מדינות, שלכל אחת מהן יש גבול משותף עם כל האחרות. לכן לא ניתן לצבוע אותה בפחות מארבעה צבעים.