הרחבה נורמלית
בערך זה |
הרחבה נורמלית היא הרחבה אלגברית של שדות, כך שכל פולינום אי-פריק מעל השדה הקטן שיש לו שורש בשדה הגדול, מתפצל שם. הרחבה של שדות היא גלואה אם ורק אם היא נורמלית וספרבילית. תת-הרחבות נורמליות בהרחבת גלואה מאופיינות בכך שחבורות האוטומורפיזמים המתאימות להן הן נורמליות בחבורת גלואה של ההרחבה.
הגדרה
הרחבה אלגברית של היא הרחבה נורמלית אם כל פולינום אי-פריק שיש לו שורש ב-, מתפצל ב-, כלומר, הוא מהווה מכפלה של גורמים ליניאריים מעל .
יהי שדה ויהי הסגור האלגברי שלו. התנאים הבאים שקולים עבור תת-שדה :
- היא הרחבה נורמלית של שדות.
- הוא שדה פיצול של קבוצת פולינומים ב-.
- כל פולינום מינימלי מעל של איבר מ-, מתפצל ב-.
- לכל אוטומורפיזם בחבורת גלואה האבסולוטית -הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \operatorname {Gal} ({\bar {F}}/F)} , מתקיים .
- לכל שיכון של ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{F}} מעל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} , מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma (K) = K} .
- מספר האיברים בחבורת גלואה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Gal}(K/F)} הוא הדרגה הספרבילית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} מעל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} . קרי, מספר השיכונים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} ל- המרחיבים את השיכון הסטנדרטי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} .
- חבורת גלואה האבסולוטית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} נורמלית בחבורת גלואה האבסולוטית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} .
תכונות של הרחבות נורמליות
הרחבת שדות היא הרחבת גלואה אם ורק אם היא נורמלית וספרבילית. לכן מעל שדות ממאפיין אפס, כל הרחבה נורמלית היא הרחבת גלואה, והדבר מאפשר להפעיל שם את המשפט היסודי של תורת גלואה ביתר קלות.
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} הרחבה נורמלית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} נורמלית מעל כל שדה ביניים.
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} ו- הן הרחבות נורמליות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} המוכלות ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} אז הצירוף שלהם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle EK} והחיתוך שלהם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K \cap E} הם הרחבות נורמליות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} .
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E/F} הרחבת גלואה וחבורת גלואה שלה היא , ואם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \supset K \supset F} שדה ביניים, מתאימה לו לפי המשפט היסודי של תורת גלואה תת-חבורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \mathrm{Gal}(E/K)} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} . תת-חבורה זו היא נורמלית אם ורק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K/F} היא הרחבה נורמלית של שדות.
דוגמאות
- כל הרחבה ריבועית (כמו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q} [\sqrt{2} ] / \mathbb{Q}} ) היא נורמלית.
- ההרחבה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}[ \sqrt[3]{2}] / \mathbb{Q}} אינה נורמלית, שכן מתוך שלושת השורשים של הפולינום האי-פריק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3 - 2} רק השורש הממשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{2}} נמצא בשדה ההרחבה ואילו שני השורשים הנותרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega \sqrt[3]{2} , \omega^2 \sqrt[3]{2} \in \mathbb{C}} (כאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega = \exp( i 2 \pi / 3) = \frac{-1 + i \sqrt{3} }{2}} ) הם מספרים מרוכבים ולכן לא שייכים ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}[ \sqrt[3]{2} ] \subset \mathbb{R}} שהיא הרחבה ממשית.
- עבור p מספר ראשוני, ההרחבה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}[\sqrt[p]{2}, \zeta_p] / \mathbb{Q}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta_p} הוא שורש יחידה p-י פרימיטיבי, היא הרחבה נורמלית ממעלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ \mathbb{Q}[\sqrt[p]{2}, \zeta_p] : \mathbb{Q} \right] = p(p-1)} . זהו שדה הפיצול של הפולינום האי-פריק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^p - 2} .
ראו גם
לקריאה נוספת
- Jacobson, Nathan (1989), Basic Algebra II (2nd ed.), W. H. Freeman
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics 211
קישורים חיצוניים
- הרחבה נורמלית, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
28242848הרחבה נורמלית