תנאי שוורצשילד

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באסטרופיזיקה תנאי שוורצשילדאנגלית: Schwarzschild criterion) הוא תנאי ליציבות של גרם שמים כמו כוכב או ענק גזים כנגד קונווקציה. קרוי על שמו של הפיזיקאי קרל שוורצשילד. תנאי שוורצשילד הוא מקרה פרטי של תנאי לדו, בו מניחים הרכב כימי הומוגני של הגרם. לתנאי זה ישנו שימוש באסטרופיזיקה כאשר דנים בכוכבים ומדעים פלנטריים, כאשר חוקרים את המבנה הפנימי של ענקי הגז.

לתנאי יש מספר ניסוחים מתמטיים שקולים או דומים. אחד מהנפוצים הוא:

dTdZ<gCp

כאשר T זו טמפרטורה, Z הוא גובה ביחס למרכז הגרם, g היא תאוצת הכובד וCp הוא קיבול חום בלחץ קבוע.

נוסח אחר[1] של התנאי הוא:

ad>

כאשר dlnTdlnP הוא "גרדיאנט טמפרטורה"[2] של הגרם ו ad הוא גרדיאנט טמפרטורה אדיאבטי.

כאשר תנאי מתמטי זה מתקיים, האזור יציב לקונווקציה, כלומר החום עובר בהקרנה או הולכה ואין תנועת חומר המסיע את חום. בדרך כלל המעבר בהקרנה יעיל בהרבה מהולכה וניתן לקרב את הגרדיאנט טמפרטורה האמתי של הגרם ל"גרדיאנט טמפרטורה רדיאטיבי" ( כלומרrad)[3], הנתון על ידי:

rad=(dlnTdlnP)rad=P4prκL4πcGm

כאשר P זה לחץ L זו הארה (Luminosity), κ זו אטימות, c מהירות האור, G קבוע ניוטון, m מסה וpR=13aT4. ההארה עצמה נתונה לפי:

L=4πr2cκρdpRdr

הסבר אינטואיטיבי

נסתכל על אזור בגרם שמים גזי. הלחץ, הצפיפות הטמפרטורה יורדים עם הרדיוס. נדבר על מודל חד-ממדי בו מתייחסים לרדיוס כ"גובה". ניקח בועה של חומר ונעלה אותה למעלה באופו אדיאבטי, כלומר ללא החלפת חום עם הסביבה, כלומר הבועה שומרת על טמפרטורה קבועה. הבועה שומרת על שיווי משקל מכני עם הסביבה, כלומר הלחץ הפנימי בה שווה ללחץ הסביבה. מכיוון שטמפרטורה שלה קבועה והלחץ יורד, הבועה מתנפחת ונפחה עולה[4]. כך צפיפות הבועה יורדת.

השאלה שנשאלת היא: האם הבועה תמשיך לעלות או תשקע חזרה? אם הבועה שקועת, האזור נקרא יציב. אחרת, יתחיל תהליך של זרימת חומר כלפי מעלה- כלומר האזור יהפוך לבלתי יציב. במקרה היציב, החום מועבר על ידי הקרנה בעיקר ובמקרה הלא יציב על ידי הסעה.

פיתוח מתמטי

התנהגות הבועה נקבעת על ידי ציפה. כלומר שקיעה או עליה של הבועה היא פונקציה של יחס בין צפיפות הסביבה לצפיפות הבועה:

  1. אם הבועה צפופה יותר מהסביבה, הבועה תשקע חזרה.
  2. אם הסביבה צפופה יותר מהבועה, הבועה תצוף.

כלומר היציבות נקבעת לפי הקריטריון:

|Δρad|<|Δρ|

כאשר השינוי הוא לאורך רדיוס הגרם. מכיוון שלפי משוואת המצב PρT ואנו שומרים על לחץ קבוע, ניתן לתרגם את התנאי ל:

|dTdr|ad<|dTdr|

תוך שימוש בכלל השרשרת:

|dTdr|=|dTdPdPdr|=|dTdPgρ|=|dTdP|gmHμkTP=|dlnTdlnP|gmHμk

המעבר השני נובע משיווי משקל הידרוסטטי והשלישי ממשוואת המצב. μ הוא משקל מולקולרי ממוצע, k הוא קבוע בולצמן וmH הוא מסת אטום המימן. כך התנאי מתורגם ל:

|dlnTdlnP|ad>|dlnTdlnP|

או בצורתו המקוצרת:

ad>

הערות שוליים

  1. Radiative Transfer, אתר אוניברסיטת הוואי
  2. נוסח זה הוא לפי הלחץ ולא לפי רדיוס הגרם. הלחץ יורד מונוטונית עם רדיוס
  3. Convection and Mixing in Giant Planet Evolution, אלונה וזן
  4. ניתן לראות זאת במשוואת הגז האידיאלי, בה ירידה בלחץ כאשר הטמפרטורה קבועה דורשת עליה בנפח
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0


שגיאות פרמטריות בתבנית:מיון ויקיפדיה

שימוש בפרמטרים מיושנים [ דרגה ]
תנאי שוורצשילד22380319