פורטל:מתמטיקה/מאמר נבחר/9

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
מערכות המספרים החשובות וקשרי ההכלה ביניהן
מערכות המספרים החשובות וקשרי ההכלה ביניהן

במתמטיקה, מערכת מספרים היא קבוצה של מספרים, או עצמים הדומים למספרים, שמוגדרות בה פעולות אריתמטיות כגון חיבור וכפל. המערכות החשובות ביותר הן קבוצת המספרים הטבעיים, חוג המספרים השלמים, שדה המספרים הרציונליים, שדה המספרים הממשיים ושדה המספרים המרוכבים. עם זאת לשאלה 'מהי מערכת מספרים' אין תשובה מדויקת, וקבוצות כלליות יותר עשויות להחשב למערכות מספרים בהקשר המתאים.

סביר להניח שבתחילה רק מספרים טבעיים נחשבו כ'מספרים'. אלו הם מונים של קבוצות סופיות: אחד, שניים, שלושה, ארבעה וכן הלאה. בבית הספר של פיתגורס 'מספר' היה תמיד יחס בין שני מספרים שלמים, כלומר (בשפה המודרנית) מספר רציונלי. מצד שני הפיתגוראים זיהו מספר עם האורך של קטע מתאים, והעדיפו בזה את הגישה הגאומטרית לשאלה 'מהו מספר'. הצורך של הפיתגוראים בהתאמה בין שתי ההגדרות האלה היה חזק כל-כך, עד שלפי האגדה הם זרקו לנהר תלמיד שגילה כי אורך האלכסון של ריבוע שצלעו יחידה אחת (שורש 2 על-פי משפט פיתגורס) אינו מספר רציונלי.

לערך המלא