משפט ארבעת הריבועים של לגראנז'

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

משפט ארבעת הריבועים של לגראנז' הוא מן התוצאות הקלאסיות והאלגנטיות בתורת המספרים. המשפט, אותו הוכיח ז'וזף לואי לגראנז' ב-1770, קובע שכל מספר טבעי אפשר לכתוב כסכום ארבעה ריבועים: לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} אפשר למצוא מספרים שלמים עבורם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=a^2+b^2+c^2+d^2} . למשל, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 107=8^2+5^2+3^2+3^2} .

הוכחת המשפט של לגראנז'

הצעד הראשון בהוכחה הוא הזהות המפתיעה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}(a^2+b^2+c^2+d^2)(x^2+y^2+z^2+u^2)&=(ax-by-cz-du)^2\\&+(ay+bx+cu-dz)^2\\&+(az-bu+cx+dy)^2\\&+(au+bz-cy+dx)^2\end{align}}

שדומות לה יש רק עבור שניים, ארבעה או שמונה נעלמים (משפט הורוויץ, וראו גם תבנית פיסטר). הזהות מראה שאם אפשר להציג שני מספרים כסכום ארבעה ריבועים, אפשר להציג כך גם את מכפלתם. לכן, די להראות שניתן להציג את כל המספרים הראשוניים כסכום ארבעה ריבועים, כי כל מספר הוא מכפלת ראשוניים. ההוכחה לטענה זו מבוססת על העובדה שלכל מספר ראשוני הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} קיימים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b} עבורם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2+b^2+1} מתחלק ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} , ואז על שיטת הירידה של אוילר, המאפשרת להמיר הצגה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle kp} (עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1<k<p} ) כסכום ארבעה ריבועים בהצגה דומה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k'p} עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k'<k} . לאחר מספר סופי של צעדים מגיעים להצגה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} עצמו.

הצגות כסכום ארבעה ריבועים קשורות קשר הדוק לאלגברת הקווטרניונים, ובעיקר לתת-החוג של הקווטרניונים השלמים (חוג הורוויץ של השלמים האלגבריים, וחוג ליפשיץ השווה ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Z[i,j]} ).

משפטים דומים

כבר במאה ה-3, דיופנטוס שיער כי כל מספר מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4^n(8m+7)} (למשל: 7, 15, 23) לא ניתן להציג כסכום שלושה ריבועים. רנה דקארט הוכיח זאת ב-1638. פייר דה פרמה שיער שאלו המספרים היחידים שלא ניתנים להצגה בצורה זו. אדריאן-מארי לז'נדר הציג הוכחה סבוכה לטענה הזו ב-1798, ואילו קרל פרידריך גאוס הביא הוכחה שונה וקצרה בהרבה ב-1801. למשל, 107 אינו מהצורה האסורה, ואכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 107=9^2+5^2+1^2} . ההוכחה של משפט זה קשה בהרבה מזו של משפט לגראנז', והיא הייתה חלק מהפיתוח של התורה של תבניות ריבועיות במספרים שלמים, שלה תרם גאוס תרומה מכרעת. בהסתמך על תוצאה זו, ניתן להוכיח בדרך פשוטה תוצאה אחרת של גאוס: כל מספר הוא סכום שלושה מספרים משולשיים או פחות.

באשר להצגה כסכום של שני ריבועים, פרמה כתב ב-1640 (במכתב למרסן) שאפשר להציג מספר ראשוני כסכום שני ריבועים, אם ורק אם הוא נותן שארית 1 בחלוקה ל-4 (גם כאן, העובדה שמספרים מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4m+3} אינם ניתנים להצגה כסכום שני ריבועים היא קלה מאוד להוכחה). לא ברור אם פרמה ידע להוכיח טענה זו; ב-1749 שלח לאונרד אוילר (הפעם, במכתב לגולדבך) הוכחה מסודרת, המבוססת על שיטת הנסיגה האינסופית שפיתח.

תוצאות אלה על הצגה של מספרים כסכום של ריבועים הוכללו בבעיית וארינג, השואלת על המספר הקטן ביותר של חזקות-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} המספיקות להצגת כל מספר טבעי, ובבעיות על 'תבניות אוניברסליות' בתבניות ריבועיות.

הכללות

מן התאוריה של הסה ומינקובסקי, המהווה מקרה פרטי של עקרון הסה, נובע שמשפט לגראנז' נכון לא רק בשלמים הרציונליים, הרגילים, אלא גם בכל שדה מספרים (ואף בכל שדה גלובלי): כל איבר בשדה כזה ניתן להציג כסכום של ארבעה ריבועים בשדה.

לפי משפט המספרים המצולעים, אותו הוכיח קושי ב-1813, כל מספר ניתן להצגה כסכום של לכל היותר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} מספרים מצולעים מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . המקרה הפרטי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=4} הוא משפט לגראנז'.