אסטרופיזיקה

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף אסטרופיזיקאית)
קפיצה לניווט קפיצה לחיפוש
‏NGC 4414, גלקסיה ספירלית טיפוסית בקבוצה שערות ברניקי, היא בעלת קוטר של כ-56,000 שנות אור ונמצאת במרחק של כ-60 מיליון שנות אור מאיתנו

אסטרופיזיקהיוונית: אסטרון - כוכב) היא ענף של האסטרונומיה העוסק בפיזיקה של היקום, ובפרט בתכונותיהם הפיזיות (בהירות, צפיפות, טמפרטורה, הרכב כימי) של עצמים אסטרונומיים כגון כוכבים, גלקסיות, חורים שחורים והחומר הבין-כוכבי, ובפעולות הגומלין ביניהם. קוסמולוגיה הוא ענף באסטרופיזיקה, העוסק בתאוריות בקנה המידה הגדול ביותר, בו תורת היחסות הכללית של אלברט איינשטיין מהווה מרכיב מרכזי.

אסטרופיזיקה היא תחום רחב מאד ובמסגרתה נעשה שימוש בתורות פיזיקליות רבות, כגון מכניקה, אלקטרומגנטיות, מכניקה סטטיסטית, תרמודינמיקה, מכניקה קוונטית, יחסות, פיזיקה מולקולרית, פיזיקה גרעינית ופיזיקת חלקיקים.

סיווג שמה של המחלקה הרלוונטית באוניברסיטה ("אסטרופיזיקה" למול "אסטרונומיה") נובע לעיתים קרובות מההיסטוריה של המחלקה ופחות מנושאי הלימוד והמחקר. לדוגמה, בפקולטה למדעים מדויקים של אוניברסיטת תל אביב פועל "בית הספר לפיזיקה ואסטרונומיה" ובמסגרתו עוסקים החוקרים הן באסטרופיזיקה תאורטית והן בתצפיות אסטרונומיות.

היסטוריה

בני אדם עסקו באסטרונומיה לכל אורך ההיסטוריה המתועדת, ולמרות זאת לאורך תקופה ארוכה היא נחשבה לענף נפרד ממדע הפיזיקה. בראיית העולם האריסטוטלית, השמימי שויך לשלמות - גופים ברקיע נדמו להיות כדורים מושלמים הנעים במסלולים מעגליים מושלמים - בזמן שהארצי נדמה מועד לחוסר שלמות; שתי הממלכות הללו נראו כלא קשורות זו לזו.

אריסטרכוס מסמוס (סביבות 310-250 לפני הספירה) היה הראשון לטעון שאת תנועת גרמי השמים ניתן להסביר על ידי מודל בו כוכבי הלכת במערכת השמש סובבים סביב השמש. בעולם הגאוצנטרי של אותם ימים, התאוריה ההליוצנטרית של אריסטרכוס נחשבה לכופרת במוסכמות, ולמשך מאות שנים ההשקפה לפיה כל גרמי השמיים סובבים סביב כדור הארץ, נותרה ללא עוררין. במאה ה-16 חידש את התאוריה האסטרונום ניקולאוס קופרניקוס, וב-1609 גילה גלילאו גליליי את ארבעת הירחים הבהירים ביותר של צדק ותיעד את מסלוליהם סביב כוכב הלכת, אשר סתרו את מערכת האמונות הגאוצנטרית של הכנסייה הקתולית באותם ימים. כדי להתחמק מעונש חמור נאלץ גלילאו להצהיר שעבודתו היא מתמטיקה מופשטת, ולא יכולה להיחשב כפילוסופיה של הטבע (שם נרדף לפיזיקה), כלומר, אינה מעשית.

הזמינות של מידע תצפיתי מדויק (בעיקר מתצפיותיו של טיכו ברהה) הובילה לניסיונות למצוא תאוריה שתסביר את התצפיות. בתחילה, נתגלו רק חוקים ניסיוניים, כגון חוקי קפלר של תנועת כוכבי הלכת שנוסחו בתחילת המאה ה-17. מאוחר יותר באותה מאה שילב אייזק ניוטון בין חוקי קפלר לחוקי הדינמיקה של גלילאו, כאשר גילה כי אותם חוקים השולטים בתנועה על פני כדור הארץ, שולטים גם בתנועתם של גרמי השמים - כוכבי הלכת והירח. המכניקה השמימית היא השימוש בחוקי הכבידה וחוקי ניוטון להסברת חוקי קפלר והייתה האיחוד הראשון של ענפי האסטרונומיה והפיזיקה.

פרסום ספרו של ניוטון, היסודות המתמטיים של פילוסופיית הטבע, שינה את הניווט הימי מן הקצה אל הקצה. החל מ-1670, נמדד העולם כולו בציוד מדידה מודרני ובשעונים המדויקים ביותר שהיו בנמצא. הצורך בניווט מדויק הוביל לשיפור גדל והולך ברמת הדיוק של התצפיות האסטרונומיות מחד ושל כלי התצפית מאידך, ושיפור זה בתורו הניב כמות גדולה של מידע שהיה זמין למדענים.

בשלהי המאה ה-19 נתגלה שכאשר קרני אור מהשמש נשברות, ניתן להבחין במספר רב של קווי ספקטרום - אזורים בקשת הצבעים שבהם יש מעט אור או אין בכלל. ניסויים בגזים חמים הראו שאותם קווים מופיעים בספקטרום של גזים, וכל תבנית מתאימה ליסוד כימי ייחודי. בצורה זו הוכח שהיסודות הכימיים מהם מורכבת השמש (בעיקר מימן) הם כאלה שנמצאים גם על כדור הארץ. למעשה, היסוד הליום נתגלה לראשונה בספקטרום של השמש ורק לאחר מכן על כדור הארץ, ומכך נגזר שמו (הליו ביוונית - שמש). במהלך המאה ה-20, השתפר מדע הספקטרוסקופיה (חקירת קווי הספקטרום), בעיקר בעקבות התגבשותה של מכניקת הקוונטים, שהייתה נחוצה להבנת התצפיות האסטרונומיות והניסיוניות.

אסטרופיזיקה תצפיתית (ניסויית)

הפליאדות (כימה), צביר כוכבים פתוח בקבוצת הכוכבים שור

מרבית התצפיות נעשות כיום באמצעות הספקטרום האלקטרומגנטי.

פרט לקרינה אלקטרומגנטית, קיים מספר מועט מאד של תופעות שמקורן במרחקים גדולים ושניתן לצפות בהן מכדור הארץ. מספר מתקנים לגילוי גלי כבידה נבנו שהמפורסם מביניהם הוא מערך הגלאים האינטרפרומטריים, LIGO, באמצעות מתקן זה נמדדה בפברואר 2016 לראשונה באופן ישיר הימצאותם של גלי כבידה[1][2] .בנוסף גם מתקנים לגילוי חלקיקי נייטרינו נבנו, בעיקר על מנת לחקור את השמש. לבסוף, ניתן לצפות בקרינה קוסמית המורכבת מחלקיקים בעלי אנרגיה גבוהה במיוחד, כאשר אלה פוגעים באטמוספירה של כדור הארץ. בין השאר, קיים מצפה כזה גם בישראל, על הר החרמון.

התצפיות משתנות גם בסדר הגודל של הזמן שבו הן מבוצעות. נתונים היסטוריים על תצפיות בתחומים מסוימים מקיפים מאות ואף אלפי שנים. רוב התצפיות האופטיות נמשכות ממספר דקות למספר שעות, ולכן קשה לצפות כך בתופעות המשתנות בתדירות גבוהה יותר. באמצעות תצפיות רדיו ניתן להבחין באירועים המשתנים בסדר גודל של מילי-שניות (למשל, על מנת להבחין בפולסארים בעלי מחזור סיבוב מהיר במיוחד) ומנגד גם לשלב נתונים שנאספו במשך שנים (למשל, על מנת לחקור את האטת מחזור הסיבוב של פולסארים).

המחקר הנוגע לשמש שלנו תופס מקום מיוחד באסטרופיזיקה תצפיתית, מאחר שהיא הכוכב הקרוב ביותר אלינו. בכוכבים אחרים לא ניתן לצפות באותה רמה של פירוט עקב המרחקים העצומים בהם הם נמצאים.

בנוסף, מתקיים מחקר ניסיוני בתחום הקרוי אסטרופיזיקה גרעינית. תחום זה עוסק בתהליכים הגרעיניים האחראים על התפתחותם והרכביהם הכימיים של גורמים שמימיים. בעזרת מאיצי חלקיקים ניתן לשחזר במעבדה תנאים רלוונטיים השוררים בכוכבים ולבצע ניסויים של תהליכים גרעיניים.

אסטרופיזיקה תאורטית (עיונית)

אסטרופיזיקאים תאורטיים משתמשים במגוון רחב של כלים, וביניהם:

המודלים התאורטיים שיוצרים התאורטיקנים מפיקים ניבויים הניתנים לאישוש או הפרכה באמצעות תצפיות. התצפיתנים מחפשים נתונים אשר יאששו או יפריכו את המודלים האלה, או יסייעו בבחירה בין מספר מודלים חלופיים המסבירים את אותה תופעה. לעיתים מתגלים בתצפיות נתונים חדשים אשר אינם תואמים את הניבויים הקיימים, ואז מוטל על התאורטיקנים לעשות שינויים בתאוריה הקיימת כדי להסביר גם את הנתונים החדשים. במקרים מסוימים, כמויות גדולות של נתונים הסותרים את ניבויי התאוריה עשויות לגרום לזניחה מוחלטת של מודלים קיימים (ראו גם: השיטה המדעית).

בין הנושאים הנחקרים על ידי אסטרופיזיקאים תאורטיים: דינמיקה כוכבית ואבולוציה כוכבית; היווצרות גלקסיות; המבנה בקנה-מידה גדול של החומר ביקום; מקורות הקרינה הקוסמית; יחסות כללית; וקוסמולוגיה פיזיקלית, הכוללת קוסמולוגיית מיתרים וכן מסקנות קוסמולוגיות של פיזיקת החלקיקים. תורת היחסות הכללית משמשת ככלי להערכת תכונותיהם של מבנים בקנה-מידה גדול, בהם הכבידה מהווה מרכיב מרכזי, וכן כבסיס לפיזיקה של חורים שחורים וגלי כבידה.

מודל Lambda-CDM הוא המודל של קוסמולוגיית המפץ הגדול, המסביר את התצפיות של קרינת הרקע הקוסמית, מבנה היקום בקנה מידה גדול, סופרנובות והאצת התפשטות היקום. במודל זה כלולים מודלים אסטרופיזיקליים רבים, ביניהם: המפץ הגדול, אינפלציה קוסמית, חומר אפל ותאוריות פיזיקליות יסודיות אחרות.

מספר דוגמאות לשילוב בין מודלים תאורטיים וכלים תצפיתיים:

תופעה פיזיקלית כלי תצפיתי מודל תאורטי מסביר או מנבא
כבידה טלסקופ רדיו כבידה עצמית היווצרותם של צבירי כוכבים
היתוך גרעיני ספקטרוסקופיה אבולוציה כוכבית זוהרם של הכוכבים, כיצד נוצרו מתכות
המפץ הגדול טלסקופ החלל האבל, COBE, WMAP התפשטות היקום גיל היקום
תנודות קוונטיות אינפלציה קוסמית בעיית השטיחות[3]
קריסה כבידתית אסטרונומיה של קרני רנטגן יחסות כללית חורים שחורים במרכז גלקסיית אנדרומדה

חומר אפל ואנרגיה אפלה הם תחומי המחקר המובילים כיום באסטרופיזיקה.

אסטרופיזיקה בישראל

בישראל העיסוק באסטרופיזיקה במהלך לימודי התואר הראשון בפיזיקה מוגבל בדרך כלל לקורס מבוא אחד. לימודי תואר שני ודוקטורט באסטרופיזיקה מתקיימים במחלקות לפיזיקה במוסדות באוניברסיטת תל אביב, הטכניון, מכון ויצמן, האוניברסיטה העברית ואוניברסיטת בן-גוריון. בנוסף, מתקיימים לימודים במדעים פלנטריים, בחוג לגיאופיזיקה ומדעים פלנטריים באוניברסיטת תל אביב הן לתואר ראשון והן לתארים מתקדמים.

קבוצות מחקר ישראליות חוקרות בכל תחומי האסטרופיזיקה, הן התצפיתיים והן העיוניים. רוב המחקר התצפיתי בארץ מתקיים במצפה הכוכבים על שם וייז של אוניברסיטת תל אביב, הממוקם במצפה רמון ובו נמצא הטלסקופ הגדול בארץ. קיימים גם מספר מצפים קטנים יותר, אשר משמשים בעיקר לצורכי חינוך (ראו גם: מצפי כוכבים בישראל). אסטרופיזיקאים מאוניברסיטאות בארץ משתמשים גם בשירותיהם של מצפים אחרים ברחבי העולם ובטלסקופי חלל כגון האבל. במרכז למחקר גרעיני בשורק מושלם בתקופה זו מאיץ חלקיקים שעתיד לשמש בין השאר למחקר באסטרופיזיקה גרעינית.

ראו גם

לקריאה נוספת

  • Bradley W.Carroll and Dale A.Ostlie, An Introduction to Modern Astrophysics, 2nd edition, Addison-Wesley, 2007. מסת"ב 0805304029.

קישורים חיצוניים

הערות שוליים

  1. ^ אבי בליזובסקי, ‏הוכחה לתורת היחסות הכללית של איינשטיין: "גילוי גלי הכבידה פותח לנו חלון חדש ליקום", באתר "הידען", 11 בפברואר 2016
  2. ^ רפאלה גויכמן, נמצאה הוכחה לתאוריה של אלברט איינשטיין מלפני 100 שנה, באתר ynet, 11 בפברואר 2016
  3. ^ מדוע צפיפות היקום כה קרובה לצפיפות הקריטית הנחוצה לקיום מרחב שטוח?