אי-שוויון התמורות
אי-שוויון התמורות הוא אי-שוויון שימושי המאפשר למצוא תמורות שנותנות ערך מקסימלי.
האי-שוויון קובע כי: אם נתונות שתי N-יות סדורות בעלות n איברים, a ו-b, כך שאיברי a מסודרים מהקטן לגדול (נסמן אותם ב- ) ו-b בסדר מסוים (ומסומנים גם הם ), אז הביטוי מקבל ערך מקסימלי כאשר גם איברי b מסודרים מהקטן לגדול. ערך מינימלי מתקבל כאשר הם מסודרים מהגדול לקטן.
הוכחה
טענת עזר: אם ו-, אז . הוכחה: ביטוי שקול הוא
- או
- . כיוון שהביטויים בסוגריים הם שליליים, המכפלה שלהם חיובית.
הוכחת האי-שוויון: ניקח תמורה כלשהי על b ונחשב את הביטוי. נשים לב שאם קיימים שני מספרים i>j כך ש-, אז נוכל להחליף ביניהם ולהגדיל את ערך הביטוי (על פי טענת העזר). נמשיך בתהליך עד שנגיע למצב שאיברי b מסודרים לפי הסדר. כיוון שבכל שלב הגדלנו את ערך הביטוי, הרי שבסיכומו של דבר הגדלנו אותו ולכן בתמורה שבה איברי b מסודרים לפי הסדר הערך גדול יותר מאשר זאת שבחרנו. כיוון שהסבר זה לא תלוי מאיזה תמורה התחלנו, הוא נכון לכל תמורה, ולכן התמורה בה איברי b מסודרים לפי הסדר היא זאת שנותנת את הערך המקסימלי.
ההוכחה שכאשר איברי b מסודרים מהגדול לקטן מתקבל ערך מינימלי אנלוגית לחלוטין.
אי-שוויון התמורות21276676Q1149189