הסדרה ההרמונית
בערך זה |
במתמטיקה, הסדרה ההרמונית היא הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots} . הסדרה קרויה כך כיוון שאורכי המיתרים שהצלילים העיליים מרעידים פרופורציונליים לסדרה אחת, חצי, שליש וכו׳.
הטור ההרמוני
הטור האינסופי מכונה הטור ההרמוני והוא מתבדר (כלומר הוא אינו מתכנס למספר סופי).
הטור ההרמוני הוא אחד הטורים הפשוטים שהאיבר הכללי שלהם מתכנס לאפס (כי הגבול של הסדרה ההרמונית הוא אפס), ובכל זאת סכום הטור מתבדר. יתר על כן, הטור ההרמוני מהווה מעין חסם:
- לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p>1} הטור האינסופי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty \frac{1}{n^p}} מתכנס, וערכו ניתן על ידי פונקציית זטא של רימן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(p)} .
- לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le p \le 1} הטור האינסופי מתבדר.
הסכומים החלקיים של הטור ההרמוני נקראים מספרים הרמוניים ומסומנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ H_n} , כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ H_n = \sum_{k=1}^n \frac{1}{k}} . המספרים ההרמוניים הם רציונליים אך לא שלמים (למעט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ H_1} ), ואף ההפרש בין כל שני מספרים הרמוניים שונים הוא לא שלם.
סדרת המספרים ההרמוניים שואפת לאינסוף אך לאט מאד – בקצב של הלוגריתם הטבעי. למעשה, לאונרד אוילר הוכיח שהסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ H_n - \ln (n) } מתכנסת, וגבולה מכונה על שמו קבוע אוילר.
התבדרות הטור ההרמוני
העובדה שהטור ההרמוני מתבדר מפתיעה אינטואיטיבית, משום שגבול הטור באינסוף הוא 0 ולכן ניתן היה לצפות שנוכל להזניח את האיברים הרחוקים. כך לדוגמה, סכום הטור עובר את 10 רק באיבר ה־12,367 שלו, ואת 11 באיבר ה־33,617. ניתן להוכיח את התבדרות הטור בעשרות דרכים.
דמיון הטור ללוגריתם הטבעי
על פי סכומי דארבו של אינטגרל רימן, הסכום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n \frac{1}{k}} חוסם את האינטגרל המסוים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^n \frac{\mathrm dt}{t}} מלמעלה (שכן זהו סכום דארבו עליון), כלומר לכל טבעי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n \frac{1}{k}\ge\int\limits_1^n \frac{\mathrm dt}{t}= \ln (n)} היות שפונקציית הלוגריתם הטבעי שואפת לאינסוף כאשר המשתנה שלה שואף לאינסוף, הסדרה הימנית שגדולה ממנה שואפת לאינסוף גם כן ולכן הטור עצמו מתבדר.
למעשה, קיים גם אי שוויון הפוך – גם פונקציית הלוגריתם חוסמת את הטור מלמעלה. אם נתייחס אל הטור (חוץ מהאיבר הראשון) כסכום דארבו התחתון של האינטגרל המסוים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_1^n \frac{\mathrm dt}{t}= \ln (n)} נקבל את האי-שוויון הבא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=2}^n \frac{1}{k}\le\int\limits_1^n \frac{\mathrm dt}{t}= \ln (n)} או בניסוח שקול: לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} , מתקיים האי-שוויון .
זהו מקרה פרטי של מבחן לבדיקת התכנסות של טורים באמצעות התכנסות אינטגרלים ולהפך. אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f} פונקציה מונוטונית יורדת אז הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty f(n)} מתכנס אם ורק אם האינטגרל הלא אמיתי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_1^\infty f(t)\,\mathrm dt} מתכנס.
מבחן הדילול
ניתן לסכם את הטור בצורה שתראה את ההתבדרות שלו בדרך יותר ברורה: נקבץ יחד את כל האיברים בין שתי חזקות של 2 ונסכם אותם יחד. לדוגמה, נסכם את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} לבד, את ואת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} ביחד, את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{7}, \frac{1}{6}, \frac{1}{5}} עד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{8}} וכן הלאה. בכל אחד מסכומי הביניים האלו כל האיברים גדולים מהאיבר האחרון, שהוא בעצמו חזקה שלילית של 2. בנוסף, בסכום הביניים שבו האיבר האחרון הוא יהיו בדיוק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2^{k-1}} איברים, ולכן ערך כל סכום ביניים כזה גדול מחצי. ניתן לבטא את סכומי הביניים האלו בנוסחה מפורשת בעזרת הערך השלם של הלוגריתם עם בסיס 2:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty \frac{1}{k} = \sum_{k=1}^\infty 2^{-\log_2 k} \ge\sum_{k=1}^\infty 2^{-\lceil \log_2 k \rceil} \! \ = 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \frac{1}{16}+\cdots }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1 + \frac{1}{2} +\ \quad\frac{1}{2} \ \quad+ \ \qquad\quad\frac{1}{2}\qquad\ \quad \ + \ \quad\ \cdots }
זהו סכום אינסופי של מספר חיובי (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2} ) ולכן הוא מתבדר. בדרך הזו קיבלנו גם הערכה מסוימת לקצב הגידול של הטור (הסכום החלקי גדול מ־הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1+\frac{\lfloor \log_2 n \rfloor}{2} } ).
טורים דומים
טור חשוב שמתקשר לטור ההרמוני הוא הטור ההרמוני המתחלף (טור לייבניץ), שהוא טור הרמוני עם סימנים מתחלפים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\dots} טור זה מתכנס וערכו הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \ln 2} (הדבר נובע מהצבת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x=1} בטור טיילור של הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \ln(1+x)} ). זוהי דוגמה למבחן לייבניץ להתכנסות טורים הקובע כי טור מתחלף המורכב מסדרה מונוטונית יורדת שהאיבר הכללי שלו שואף לאפס – מתכנס. הטור הוא דוגמה סטנדרטית למשפט רימן, שכן שינוי סדר איבריו משנה את הסכום.
טור נוסף שמתקשר לטור ההרמוני הוא טור ההופכיים של המספרים הראשוניים, שגם הוא טור מתבדר:[1]
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p_k} הוא הראשוני ה־הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k} ־י.
אם נשמיט מן הטור ההרמוני את כל האיברים המכילים את הספרה 9 נקבל טור מתכנס וסכומו הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, 22.92067\dots} . הטור נחקר לראשונה על ידי A.J. Kempner בשנת 1914. קמפנר הוכיח כי בניגוד לאינטואיציה, הטור הזה מתכנס, וסכומו הוא פחות מ־90. מאוחר יותר חושב במדויק סכום הטור.[2]
קישורים חיצוניים
- גדי אלכסנדרוביץ', האם הטור ההרמוני מתכנס ל-137?, באתר "לא מדויק"
- הסדרה ההרמונית, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
הערות שוליים
- ^ עובדה זו מהווה הוכחה נוספת לכך שיש אינסוף מספרים ראשוניים. ראו: קיומם של אינסוף מספרים ראשוניים#הוכחתם של אוילר וקרונקר.
- ^ Kempner, A. J., A Curious Convergent Series, American Mathematical Monthly, 21 (2), February 1914. pp. 48–50, in JSTOR
25482025הסדרה ההרמונית