משוואה דיפרנציאלית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, משוואה דיפרנציאלית היא משוואה שבה המשתנה הוא פונקציה, כאשר המשוואה מתארת תלות בין הפונקציה ונגזרותיה. למשוואות דיפרנציאליות שימוש רב בתחומי המדע השונים.

משוואה דיפרנציאלית רגילה היא משוואה שבה הפונקציה היא פונקציה של משתנה יחיד, בניגוד למשוואה דיפרנציאלית חלקית, שבה הפונקציה היא פונקציה בכמה משתנים, והנגזרות הן נגזרות חלקיות.

למשל היא משוואה דיפרנציאלית רגילה שפתרונה הוא כל פונקציה מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=Ce^x} (אקספוננט) כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} מספר קבוע.

סיווג משוואות דיפרנציאליות

משוואות דיפרנציאליות מסווגות על פי שני קריטריונים עיקריים: סדר ומעלה.

מעלת המשוואה היא החזקה (המעריך) הגבוהה ביותר של הפונקציה הנעלמת, המופיעה בה. הסדר הוא סדר הנגזרת הגבוהה ביותר של הפונקציה.

שימוש במשוואות דיפרנציאליות

למשוואות דיפרנציאליות יש שימושים בכל תחומי המדע: פיזיקה, הנדסה, ביולוגיה, כלכלה ומטאורולוגיה. הסיבה לכך היא שלרוב אנו יודעים לכתוב משוואה המתארת את החוק שלפיו משתנה האובייקט שאותו אנחנו חוקרים: לדוגמה, מיקום או מהירות של חלקיק, טמפרטורה של נקודות שונות במרחב, ביקוש והיצע של מוצרים, וכן הלאה. משוואות כאלה הן לרוב משוואות דיפרנציאליות, ולכן הן צצות ועולות בכל תחום מדעי שבו מנסים לתאר את העולם בכלים מתמטיים.

דוגמאות למשוואות דיפרנציאליות בתחומים שונים

  • משוואה המתארת את קצב התרבות חיידקים ברגע מסוים כתלות במספרם באותו רגע. הסבר לתלות, ככל שמספר החיידקים גדל כך קצב הריבוי קטן, ולהפך.
  • משוואה המתארת תאוצה (קצב השתנות המהירות) של גוף נופל ברגע מסוים כתלות במהירות באותו רגע. ההסבר לכך הוא שהתנגדות האוויר גדלה באופן פרופורציונלי יחד עם מהירות הגוף, ולכן התאוצה קטנה.

פתרון משוואה דיפרנציאלית

ככלל, לא פשוט לפתור משוואה דיפרנציאלית. אין שיטה כללית לפתרון של משוואה כזו, ולעיתים ניתן להגיע רק לקירוב של הפתרון ולא לפתרון עצמו.

עם זאת, לסוגים מסוימים של משוואות יש שיטות מתודיות לפתרונן. ברוב המקרים הבעיה של מציאת פתרון למשוואה דיפרנציאלית הופכת לבעיה של מציאת אינטגרל לפונקציה כלשהי, אם כי גם מציאת אינטגרל אינה שיטתית ולא תמיד ניתנת לביצוע. פתרונות הנתונים על ידי אינטגרל, גם אם לא פתור, יכולים להיות שימושיים מאוד, וניתן לחשב את ערכם המקורב לכל צורך מעשי.

כדי להקל על כתיבת המשוואה מסומנות בדרך כלל הפונקציות (ונגזרותיהן) באות בודדת בלבד.

פתרון משוואה דיפרנציאלית רגילה לינארית מסדר ראשון

באופן כללי, משוואה דיפרנציאלית לינארית מסדר ראשון היא משוואה מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0(x)y'+a_1(x)y=f(x)} כאשר המשתנה בפונקציה שלנו הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} . אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0(x)\equiv0} אזי הפונקציה ידועה ואין צורך להמשיך. (אומרים כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0(x)\equiv0} אם לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} בתחום מתקיים )

לכן, נניח כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0(x)\not\equiv0} . לכן מותר לחלק ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0(x)} ולקבל משוואה מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'+\frac{a_1(x)}{a_0(x)}y=\frac{f(x)}{a_0(x)}} .

נסמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x)=\frac{a_1(x)}{a_0(x)},q(x)=\frac{f(x)}{a_0(x)}} ונקבל משוואה מהצורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'+p(x)\cdot y=q(x)} ולכן כשנרצה לפתור משוואה דיפרנציאלית לינארית מסדר ראשון, נסתכל על הצורה הזאת.

דוגמה

נרצה לפתור את המשוואה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'+\frac{1}{x}y=\frac{\sin(x)}{x}}

נכפיל את 2 האגפים ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} ונקבל:

אך אגף שמאל הוא בדיוק שווה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (xy)'} ולכן נקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}(xy)'=\sin(x)\\xy=\int\sin(x)dx=-\cos(x)+C\\y=\frac{-\cos(x)}{x}+\frac{C}{x}\end{align}}

ואכן, לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\in\R} שנבחר, הפונקציה שתתקבל פותרת את המשוואה

כעת, נרצה למצוא דרך לכל המשוואות הדיפרנציאליות הלינאריות מסדר ראשון.

שיטה אחת היא, בדומה לדוגמה, למצוא פונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(x)} כך שכשנכפיל את כל המשוואה בה, נקבל באגף שמאל את הנגזרת של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(x)y} ואז רק נשאר לבצע אינטגרציה על 2 האגפים ולקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(x)y=\int q(x)\mu(x)dx} ומשם לחלק ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(x)} ולהגיע לפתרון. השאלה היא מהי אותה .

נראה כי אנחנו בעצם דורשים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigl(\mu(x)y\bigr)'=\mu(x)y'+\mu(x)p(x)y} (חיפשנו פונקציה שע"י כפל שלה במשוואה, נקבל את הנגזרת של (הפונקציה כפול y))

נראה כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigl(\mu(x)y\bigr)'=\mu(x)y'+\mu'(x)y} ולכן בהכרח מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu'(x)=\mu(x)p(x)} ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\mu'(x)}{\mu(x)}=p(x)} . מכאן נגיע לתוצאות הבאות:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\ln\bigl(\mu(x)\bigr)=p(x)\ \Rarr\ \ln\bigl(\mu(x)\bigr)=\int p(x)dx\ \Rarr\ \mu(x)=e^{\int p(x)dx}}

ואכן, כפל המשוואה בפונקציה זאת, תמיד יגרום לנו לקבל באגף שמאל נגזרת של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(x)y} וכל מה שנשאר לעשות זה אינטגרציה וחילוק ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(x)} .

ראו גם

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0