מבחן לוקאס-להמר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת המספרים, מבחן לוקאס-להמר הוא מבחן ראשוניות – העשוי לספק הוכחה מהירה לכך שמספר נתון n הוא ראשוני. המבחן הוצע על ידי המתמטיקאי הצרפתי אדואר לוקאס בשנת מותו, 1891, ושופר בשנות ה-30 של המאה ה-20 על ידי האמריקאי ד.ה. להמר. מבחן אחר בעל שם דומה הוא מבחן לוקאס-להמר למספרי מרסן, המותאם במיוחד לבדיקת מספרי מרסן.

לפי המשפט הקטן של פרמה, אם n הוא ראשוני שאינו מחלק את a, אז  an11(modn). בניסוח אחר אפשר לומר שהסדר של a בחבורת אוילר של n מחלק את n-1. אם השוויון אינו מתקיים, זוהי ראיה מיידית לכך ש- n אינו ראשוני; אבל שוויון אינו מוכיח ש- n ראשוני - הוא עלול להיות מספר פסאודו-ראשוני.

מבחן לוקאס-להמר מהווה מעין כיוון הפוך למשפט פרמה. אם הסדר של a בחבורת אוילר של n שווה ל- n-1, אז n מוכרח להיות ראשוני. כל מבחני הראשוניות שפותחו מאוחר יותר הם וריאציות על רעיון זה.

חסרונו הגדול של המבחן הוא שנדרשת ידיעת הפירוק לגורמים של n-1. בנוסף, הבדיקה דורשת עֵד, מספר שיקרא כאן a. כל עד עשוי להוכיח ש- n ראשוני, אבל אם עד מסוים נכשל, לא ניתן להסיק מכך ש- n אינו ראשוני. ב-2004 התברר שאין צורך לבדוק עדים הגדולים מ-  (log(n))6; אם כל העדים עד מספר זה נכשלו, המספר אינו ראשוני. מתוצאה זו נובע שהוכחת ראשוניות של n היא בעיה בעלת סיבוכיות פולי-לוגריתמית.

תיאור המבחן

משפט. אם לכל גורם ראשוני q של n-1 קיים מספר a המקיים  an11(modn) ו-  a(n1)/q≢1(modn), אז n הוא ראשוני.

הוכחה. אם נגלה כי n-1 מחלק את  φ(n) (כאשר  φ פונקציית אוילר), אז נוכל להסיק  φ(n)=n1 (מכיוון שתמיד  φ(n)n1), כלומר, אין אף מספר קטן מ- n המחלק אותו, ולכן n ראשוני. נניח, אם כן, ש- q הוא ראשוני שחזקתו  qr מחלקת את  n1. לפי ההנחה קיים a שהסדר שלו בחבורת אוילר,  ord(a), מחלק את n-1 אבל לא את  (n1)/q. אם כך,  qr מוכרח לחלק את  ord(a) (אחרת  ord(a) היה מחלק את  (n1)/q), ולכן גם את  φ(n), המתחלק תמיד ב-  ord(a) (לפי משפט לגראנז'). הוכחנו שכל חזקת ראשוני המחלקת את n-1 מחלקת גם את  φ(n), כפי שרצינו.

בדרך כלל מספיקה גם הגרסה החלשה הבאה של המבחן: אם קיים מספר a המקיים  an11(modn), ו-  a(n1)/q≢1(modn) לכל גורם ראשוני q של n-1, אז n הוא ראשוני. כאן מחפשים a שיתאים בבת-אחת לכל הגורמים הראשוניים (למרות שעל-פי המשפט הראשון, תנאי זה אינו הכרחי). ההוכחה של הגרסה החלשה מיידית: אם a מספר המקיים את התנאים, אז הסדר שלו בחבורת אוילר שווה ל- n-1, ולכן (לפי משפט לגראנז') סדר החבורה מתחלק ב-n-1, כפי שרצינו להוכיח.

כדי להוכיח ש-n נתון הוא ראשוני, צריך למצוא a שיקיים את הדרישות. אם n אכן ראשוני, אז יש  φ(n1) עדים פוטנציאליים אפילו למבחן החלש (כל היוצרים של חבורת אוילר, שהיא ציקלית במקרה זה). מכיוון שהיחס  φ(n1)n1 קרוב בדרך-כלל ל-1, קל למצוא את העדים והמבחן נחשב למבחן הסתברותי יעיל.

ראו גם

מבחן_לוקאס-להמר20496336Q1568194