יחסי גרין
יחסי גרין הם יחסי שקילות בסיסיים המוגדרים בחבורה למחצה, ומארגנים את המבנה שלה סביב תת-החבורות המקסימליות. את היחסים הגדיר סנדי גרין (אנ') (1926-2014).
הגדרה
תהי חבורה למחצה, ויהי המונואיד המתקבל מצירוף איבר יחידה ל-. יחסי גרין הם ארבעה יחסי שקילות המוגדרים על :
- אם יוצרים את אותו אידיאל דו-צדדי, כלומר .
- אם יוצרים את אותו אידיאל שמאלי, כלומר .
- אם יוצרים את אותו אידיאל ימני, כלומר .
- אם וגם .
תכונות עיקריות
נאמר "מחלקת-" במקום "מחלקת שקילות לפי ", וכדומה. היחס הוא העדין ביותר: כל מחלקת- היא איחוד של מחלקות- ואיחוד של מחלקות-, וכל אחת מאלו היא איחוד של מחלקות-. אם סופית, אז . תכונות אלו מציעות פירוק של כל מחלקת- ל"תבנית ביצים", כך ששני איברים נמצאים באותה שורה אם הם שקולים-, באותה עמודה אם הם שקולים-, ובאותה תיבה אם הם שקולים-. בין מחלקות- מוגדר יחס סדר ( אם מוכל ב-).
איבר הוא רגולרי אם קיים כך ש- ו-; במקרה זה הוא הפכי של . אם מחלקת- מכילה איבר רגולרי, אז כל האיברים במחלקה הם רגולריים, וכל ההפכיים שלהם שייכים לאותה מחלקה.
תת-החבורות המקסימליות של הן מחלקות- הכוללות אידמפוטנט. אם המחלקות של שתי תת-חבורות מקסימליות שקולות-, אז הן איזומורפיות; מחלקת- המכילה תת-חבורה מקסימלית היא רגולרית. יש התאמה חד-חד-ערכית ועל בין ההצגות האי-פריקות של , לבין הזוגות כאשר מחלקת- רגולרית ו- הצגה אי-פריקה של חבורה המוכלת בה.
יחסי גרין28248354Q3077964