השערת הארדי-ליטלווד השנייה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת המספרים, השערת הארדי-ליטלווד השנייה (על שם המתמטיקאים הבריטים גודפרי הרולד הארדי וג'ון אדנזור ליטלווד) מתייחסת למספר המספרים הראשוניים בקטעים מסוימים.

ההשערה קובעת כי π(x+y)π(x)π(y) לכל x,y2, כאשר π(x) פונקציית המספרים הראשוניים. כלומר, מספר הראשוניים בקטע שאורכו y אינו עולה כאשר הקטע זז במעלה ציר המספרים. הוכח שהשערה זו סותרת את השערתם הראשונה על k-יות של ראשוניים, שממנה נובע שאם קיימות דוגמאות נגדיות להשערה השנייה, אזי ערכו של x צריך להיות גדול מאוד ביחס ל-y.

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

השערת הארדי-ליטלווד השנייה38061570