אלומה קוהרנטית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, ובמיוחד בגאומטריה אלגברית ובתורת האלומות, אלומה קוהרנטית על מרחב מחויג מקומית X היא אלומה של -מודולים שמקיימת את שני התנאים הבאים:

  1. אלומה מטיפוס סופי מעל , כלומר לכל נקודה במרחב X קיימת סביבה כך שצמצום האלומה לסביבה זו נוצר על ידי מספר סופי של חתכים. במילים אחרות, ישנו מורפיזם על של אלומות מודולים: עבור U סביבה של הנקודה.
  2. לכל קבוצה פתוחה במרחב ולכל מורפיזם , הגרעין מטיפוס סופי בעצמו.

כך, היא איזומורפית לקו-גרעין של מורפיזם של מודולים כאשר היא אלומת המבנה של X.

אלומה של חוגים נקראת אלומה קוהרנטית אם היא קוהרנטית כמודול מעל עצמה.

לאלומות קוהרנטיות תפקיד חשוב בגאומטריה אלגברית וביריעות מרוכבות. הן מופיעות באופן טבעי בתחומים אלה, למשל כך:

  • אלומת המבנה של סכמה נתרית היא קוהרנטית (כאלומת חוגים).
  • משפט הקוהרנטיות של Oka מספק מחלקה חשובה של אלומות (חוגים) קוהרנטיות: אלומת הפונקציות ההולומורפיות על יריעה מרוכבת.
  • אידיאל הפונקציות ההולומורפיות המתאפסות על תת-מרחב מרוכב סגור של יריעה אנליטית קוהרנטי (כאלומת מודולים).

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

אלומה קוהרנטית22354422Q906907